K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

\(H=x^2+xy+y^2-3x-3y\)     
\(H=\left(x^2+2xy+y^2\right)-3\left(x+y\right)-xy\)
\(H=\left(x+y\right)^2-3\left(x+y\right)-xy\)
Ta có : \(\left(x-y\right)^2\ge0\)
     \(\Rightarrow x^2+y^2\ge2xy\)
     \(\Rightarrow\left(x+y\right)^2\ge4xy\)
  \(\Rightarrow xy\le\frac{\left(x+y\right)^2}{4}\)   
\(\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)
Thay vào rồi tự tính ta được minH= -3 khi x=y=1
 

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)

30 tháng 8 2019

\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)

\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)

23 tháng 11 2020

\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))

TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)

TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)

1 tháng 12 2017

x2+y2+4/x2=8

=>x4+x2y2+4-8x2=0

=>x4-8x2+16=12-x2y2

=>(x2-4)2=12-x2y2

=>x2y2 ≤ 12 => |xy| ≤ \(\sqrt{12}=2\sqrt{3}\)

=>min xy \(\ge-2\sqrt{3}\)

xy min khi: x=2, y=\(-\sqrt{3}\)