Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
\(A=x^2-6x-4=x^2-6x+9-13=\left(x-3\right)^2-13\ge-13\)
Vậy \(A_{min}=-13\Leftrightarrow x=3\)
\(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(A=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2 \)
Vậy GTNN của A là 2 khi x = 3
\(B=2x^2+10x-1=2\left(x^2+5x+\frac{25}{4}\right)-\frac{27}{2}=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
Vậy GTNN của B là \(-\frac{27}{2}\)khi x = \(-\frac{5}{2}\)
\(A=\left(x-3\right)^2+\left(x-11\right)^2\)
\(A=x^2-6x+9+x^2-22x+121\)
\(A=2x^2-28x+130\)
\(A=2\left(x^2-14x+49\right)+32\)
\(A=2\left(x-7\right)^2+32\ge32\)
Vậy GTNN của A là 32 khi x = 7
\(A=19-6x-9x^2 \)
\(A=-\left(9x^2+6x+1\right)+20\)
\(A=-\left(3x+1\right)^2+20\le20\)
Vậy GTLN của A là 20 khi x = \(-\frac{1}{3}\)
\(A_{min}=8-\frac{25}{4}\) khi x=5/2
Bmin=xem lại đề đúng như đề Bmin=5 khi x=0
C=8+25-(2x+5)^2
Cmax=8+25 khi x=-5/2
Dmax=9 khi x=0
Cụ thể mức nào nhỉ tất cả dự trên HĐT \(\left(a+-b\right)^2=a^2+-2ab+b^2\)
cụ thể con A
\(A=x^2-2.\frac{5}{2}x+\left(\frac{5^2}{2^2}\right)+8-\frac{25}{4}\) đã thêm 25/4 =b vào phần đầu => trừ đi
\(A=\left(x-\frac{5}{2}\right)^2+8-\frac{25}{4}=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}\)
\(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge\frac{7}{4}\)đẳng thức khi x-5/2=0=> x=5/2
A=(x-5/2)^2+8-25/4=> Amin=7/4 khi x=5/2
B --> xem lại theo đề Bmin =5 khi x=0
C =8+25-(2x+5)^2=> C max=32 khi x=-5/2
D max=9 khi x=0
1 ) Ta có : \(x^2-6x+17=x^2-6x+9+8=\left(x-3\right)^2+8\ge8\forall x\)
\(\Rightarrow\dfrac{2}{x^2-6x+17}\le\dfrac{2}{8}\)
\(\Rightarrow B\le\dfrac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Max B là : \(\dfrac{1}{4}\Leftrightarrow x=3\)
2 ) Ta có : \(4x-x^2+10=-\left(x^2-4x+4\right)+14=14-\left(x-2\right)^2\le14\forall x\)
\(\Rightarrow\dfrac{3}{4x-x^2+10}\ge\dfrac{3}{14}\)
\(\Rightarrow C\ge\dfrac{3}{14}\)
Dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Min C là : \(\dfrac{3}{14}\Leftrightarrow x=2\)
Ta có : C = x2 - 10x
= x2 - 10x + 25 - 25
C = (x - 5)2 - 25
Vì \(\left(x-5\right)^2\ge0\forall x\in R\)
Nên : \(C=\left(x-5\right)^2-25\ge-25\forall x\in R\)
Vậy \(C_{min}=-25\) khi x - 5 = 0 => x = 5
Ta có : \(C=6x-x^2\)
\(=-\left(x^2-6x\right)\)
\(=-\left(x^2-6x+9-9\right)\)
\(=-\left(x^2-6x+9\right)+9\)( chuyển -9 ra ngoặc thành 9 )
\(C=-\left(x-3\right)^2+9\)
Vì \(-\left(x-3\right)^2\le0\forall x\in R\)
Nên : \(C=-\left(x-3\right)^2+9\le9\forall x\in R\)
Vậy \(C_{max}=9\) khi x - 3 = 0 => x = 3 .