![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em chỉ biết làm câu a thôi :
Mẫu của phân thức A dương mà tử âm nên Amin khi mẫu nhỏ nhất .Ta có :
\(\frac{x^2}{8}-2x+17=\left(\frac{x}{2\sqrt{2}}\right)^2-2.\frac{x}{2\sqrt{2}}.2\sqrt{2}+\left(2\sqrt{2}\right)^2+9\)
\(=\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2+9\ge9\Rightarrow\sqrt{\frac{x^2}{8}-2x+17}\ge\sqrt{9}=3\Rightarrow A_{min}=\frac{-3}{3}=-1\)khi :
\(\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2=0\Rightarrow\frac{x}{2\sqrt{2}}=2\sqrt{2}\Rightarrow x=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
+) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) Ta có :
\(x=4-2\sqrt{3}\)
\(\Leftrightarrow x=3-2\sqrt{3}+1\)
\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ )
Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là :
\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)
b)
\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)
\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
Ta có :
\(P=A:B\)
\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)
c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)
Dấu bằng xảy ra
\(\Leftrightarrow-\sqrt{x}-3=0\)
\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )
Vậy không tìm được giá trị nào của x để P đạt GTNN
ĐK \(x\ge0,x\ne1,2\)
Ta có
\(P=\sqrt{x-1}-1+\sqrt{6-3x}+1\)
\(=\frac{x-1-1}{\sqrt{x-1}+1}+\sqrt{3\left(2-x\right)}+1\)
\(=\left(2-x\right)\left(\sqrt{3}-\frac{1}{\sqrt{x-1}+1}\right)+1\)
Nhận thấy \(\sqrt{3}-\frac{1}{\sqrt{x-1}+1}>0\)
mà \(2-x\ge0\)
\(\Rightarrow\left(2-x\right)\left(\sqrt{3}-\frac{1}{\sqrt{x-1}+1}\right)+1\ge1\)
Dấu "=" xr khi 2-x=0