Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (2(1-x)+2x)/ (1-x) + ((1-x)+x)/x
= 2+ 2x/(1-x) + (1-x)/x + 1 =2x/(1-x) + (1-x)/x + 3
do 0<x<1 nên sử dụng bđt côsi cho hai số dương ta có
2x/(1-x) + (1-x)/x>= 2. căn(2) (*)
từ đó ta cộng hai vế của bđt (*) cho 3 ta đc
A >=2.căn(2) +3
=> min A = 2.căn(2) + 3
dấu "=" xảy ra khi và chỉ khi: 2x/(1-x) = (1-x)/x <> x^2 + 2x - 1=0 <> x= -1+ căn(2) ( do 0<x<1)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
\(Q=\frac{2"1-x"+2x}{1-x}+\frac{"1-x"+x}{x}\)
\(=\frac{2+2x}{1-x}+\frac{1-x}{x+1}=\frac{2x}{1-x}+\frac{1-x}{x+3}\)
Do \(0< x< 1\)nên sử dụng bdt Co-si cho hai số dương ta có:
\(\frac{2x}{1-x}+\frac{1-x}{x\ge2}\sqrt{2}\)
Từ đó ta cộng hai vế của bdt cho 3 ta được :
\(H\ge2\sqrt{2}+3\)
\(\Rightarrow minQ=2\sqrt{2}+3\)
Dấu \("="\)xảy ra khi: \(\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow x^2+2x-1=0\Leftrightarrow x=-1+\sqrt{2}\) do \(0< x< 1\)
P/s: Thay dấu ngoặc kép thành ngoặc đơn nha, ko chắc đâu
Ukm
It's very hard
l can't do it
Sorry!
Đặt A là biểu thức cần CM
ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh )
Áp dụng BĐT quen thuộc x² + y² ≥ 2xy
a^4 + b² ≥ 2a²b (1)
b^4 + c² ≥ 2b²c (2)
c^4 + a² ≥ 2c²a (3)
Đặt \(Z=\frac{2x}{1-x}+\frac{1-x}{x}\)
Áp dụng bđt Cô si với 2 số dương là \(\frac{2x}{1-x}\) và \(\frac{1-x}{x}\) ta có:
\(Z=\frac{2x}{1-x}+\frac{1-x}{x}\ge2.\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}=2.\sqrt{2}\)
Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\)
<=> 2x2 = (1 - x)2 <=> \(\sqrt{2x^2}=\sqrt{\left(1-x\right)^2}\Leftrightarrow\left|x.\sqrt{2}\right|=\left|1-x\right|\)
Mà theo đề bài 0 < x < 1 nên \(\begin{cases}x.\sqrt{2}>0\\1-x>0\end{cases}\)\(\Rightarrow\begin{cases}\left|x.\sqrt{2}\right|=x.\sqrt{2}\\\left|1-x\right|=1-x\end{cases}\)
Do đó, \(x.\sqrt{2}=1-x\Leftrightarrow x.\sqrt{2}+x=1\Leftrightarrow x.\left(\sqrt{2}+1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\)
Xét hiệu: \(y-Z=\left(\frac{2}{1-x}+\frac{1}{x}\right)-\left(\frac{2x}{1-x}+\frac{1-x}{x}\right)=\frac{2-2x}{1-x}+\frac{1-1+x}{x}=2+1=3\)
\(\Leftrightarrow y=Z+3=2.\sqrt{2}+3\)
Vậy Min y = \(2.\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)
soyeon_Tiểubàng giải, bạn học lớp 7 mà giải được toán lớp 9 luôn á?