Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chỉ biết làm câu a thôi :
Mẫu của phân thức A dương mà tử âm nên Amin khi mẫu nhỏ nhất .Ta có :
\(\frac{x^2}{8}-2x+17=\left(\frac{x}{2\sqrt{2}}\right)^2-2.\frac{x}{2\sqrt{2}}.2\sqrt{2}+\left(2\sqrt{2}\right)^2+9\)
\(=\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2+9\ge9\Rightarrow\sqrt{\frac{x^2}{8}-2x+17}\ge\sqrt{9}=3\Rightarrow A_{min}=\frac{-3}{3}=-1\)khi :
\(\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2=0\Rightarrow\frac{x}{2\sqrt{2}}=2\sqrt{2}\Rightarrow x=8\)
\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)
\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\) điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
Ta có :
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để P đạt GTNN thì \(1-\frac{2}{\sqrt{x}+1}\) phải đạt GTNN hay \(\frac{2}{\sqrt{x}+1}>0\) và đạt GTLN \(\Rightarrow\)\(\sqrt{x}+1>0\) và đạt GTNN
\(\Rightarrow\)\(\sqrt{x}+1=1\)
\(\Rightarrow\)\(\sqrt{x}=0\)
\(\Rightarrow\)\(x=0\)
Suy ra :
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{0}-1}{\sqrt{0}+1}=\frac{-1}{1}=-1\)
Vậy \(P_{min}=-1\) khi \(x=0\)
\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)
\(=x+y-\sqrt{xy}\)
Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))
Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)
\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)
Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)
Khi đó ta có \(Q\le1\)
Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0
Vậy : minQ = 1/4 <=> x = y = 1/4
maxQ = 1 <=> (x,y) = (0;1) ; (1;0)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy