\(P=\frac{81x^2+18225x+1}{9x}-\frac{6\sqrt{x}+8}{x+1},x>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{6\sqrt{x}}{3\sqrt{x}+1}\)

\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right].\frac{3\sqrt{x}+1}{6\sqrt{x}}\)

\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)

\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)

\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)

\(A=\frac{5}{6}\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)

\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)

\(\Leftrightarrow24\sqrt{x}=16\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)

20 tháng 8 2018

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\div\frac{6\sqrt{x}}{3\sqrt{x}+1}\)

\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\times\frac{3\sqrt{x}+1}{6\sqrt{x}}\)

\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)

\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)

\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)

\(A=\frac{5}{6}\)

\(\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)

\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)

\(\Leftrightarrow24\sqrt{x}=16\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)

1 tháng 8 2017

2. Xem tại đây

1.  \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)

\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)

\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow x=y=z=1\)

1 tháng 8 2017

1 ) có cách theo cosi đó 

áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)

\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)

\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)

cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)

minP=3 khi x=y=z=1