K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

woa! anh no name đẹp trai kìa

D=(|x-1|+|4-x|)+(|x-2|+|3-x|)

Áp dụng bđt GTTĐ |A|+|B|\(\ge\)|A+B| ta có:

\(\left|x-1\right|+\left|4-x\right|\ge3\)Dấu = xảy ra \(\Leftrightarrow\left(x-1\right).\left(4-x\right)\ge0\Rightarrow1\le x\le4\)(1)

\(\left|x-2\right|+\left|3-x\right|\ge1\)Dấu = xảy ra \(\Leftrightarrow\left(x-2\right).\left(3-x\right)\ge0\Rightarrow2\le x\le3\)(2)

Dấu = xảy ra khi dấu = ở (1);(2) đồng thời xảy ra \(\Rightarrow2\le x\le3\)

MinD=4\(\Leftrightarrow2\le x\le3\)

:D hok tốt

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

13 tháng 10 2017

(x-1)(x+2)(x+3)(x+6) 
=[(x-1)(x+4)][(x+2)(x+3)] 
=(x^2+5x-4)(x^2+5x+4) 
=(x^2+5x)^2-36>=-36 
=>min=-36<=>x=0 hoặc x=-5

13 tháng 10 2017

bạn làm sai rồi

25 tháng 11 2019

D=|x-1|+|x-2|+|3-x|+|4-x|

D=(|x-1|+|4-x|)+(|x-2|+|3-x|) ≥|x-1+4-x|+|x-2+3-x| = |3|+|1|=4

Dấu bằng xảy ra khi 1≤x≤4 và 2≤x≤3 ⇔ 2≤x≤3

vậy GTNN của D bằng 4 khi 2≤x≤3

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

15 tháng 9 2019

A=((x-3)+(x+1))^2>=0

A=(x-2)^2>=0

Dấu bằng xảy ra khi

(x-2)^2=0

x-2=0

x=0+2

x=2

14 tháng 10 2017

(x-1)(x+2)(x+3)(x+6) 
= [(x-1)(x+6)].[(x+2)(x+3)] 
=(x^2+5x-6)(x^2+5x+6) 
=(x^2+5x)^2 -6^2 = (x^2+5x)^2 -36 
vì (x^2+5x)^2 > hoặc bằng 0 => (x-1)(x+2)(x+3)(x+6) > hoặc bằng -36. 
Dấu bằng xảy ra khi (x^2+5x)^2=0 <=> x=0 hoặc x= -5

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

23 tháng 8 2021

Ta có : A = 9x2 - 6x + 2 

= 9x2 - 6x + 1 + 1 = (3x - 1)2 + 1 \(\ge\)

=> Min A = 1

Dấu "=" xảy ra <=> 3x - 1 = 0 

<=> x = 1/3

Vậy Min A = 1 <=> x = 1/3

b) Ta có 2B = 4x2 + 4x + 2 

= 4x2 + 4x + 1 + 1 

= (2x + 1)2 + 1 \(\ge\)1

=> B \(\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> 2x + 1 = 0 

<=> x = -1/2

Vậy Min B = 1/2 <=> x = -1/2

c) C = (2x - 1)2 + (x - 2)2 

= 5x2 - 8x + 5

=> 5C = 25x2 - 40x + 25 

 = 25x2 - 40x + 16 + 9 

= (5x - 4)2 + 9 \(\ge9\)

=> \(C\ge\frac{9}{5}\)

Dấu "=" xảy ra <=> 5x - 4 = 0 

<=> x = 0,8

Vậy Min C = 9/5 <=> x = 0,8

d) D = 3x2 + 5x = \(3\left(x^2+\frac{5}{3}x\right)=3\left(x^2+2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)=3\left(x+\frac{5}{6}\right)^2-\frac{25}{12}\ge-\frac{25}{12}\)

=> \(D\ge-\frac{25}{12}\)

Dấu "=" xảy ra <=> x + 5/6 = 0 

<=> x = -5/6

Vậy Min D = -25/12 <=> x = -5/6e) E = (x -2)(x - 3)(x + 5)x

= (x2 - 5x + 6)(x2 + 5x)