Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) 8x3 - 12x^2 + 6x - 1 = 0
⇔ ( 2x - 1 )\(^3\) = 0
⇔ 2x - 1 = 0
⇔ x = \(\frac{1}{2}\)
e) x^3 + 5x^2 + 9x = -45
⇔ x\(^3\) + 5x\(^2\) + 9x + 45 =0
⇔ x\(^2\) ( x + 5 ) + 9( x + 5 ) = 0
⇔ ( x\(^2\) + 9 ) ( x + 5 ) = 0
⇔( x + 3 ) ( x - 3 ) ( x + 5 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-5\end{matrix}\right.\)
g) x^2 + 16 = 10x
⇔ x\(^2\) - 10x + 16 = 0
⇔ x\(^2\) - 8x - 2x + 16 = 0
⇔ x( x - 8 ) - 2 ( x - 8 ) = 0
⇔ ( x - 2 ) ( x - 8 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=8\end{matrix}\right.\)
Bài 1:
a) \(6x\left(3x+15\right)-2x\left(9x-2\right)=17\) (1)
\(\Leftrightarrow18x^2+90x-18x^2+4x=17\)
\(\Leftrightarrow94x=17\)
\(\Leftrightarrow x=\dfrac{17}{94}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{17}{94}\right\}\)
b) \(\left(15x-2x\right)\left(4x+1\right)-\left(13x-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x+2=52\)
\(\Leftrightarrow\left(60x^2+15x-8x^2-2x\right)-\left(26x^2-39x-8x^2+12x\right)-\left(x^2+2x-x-2\right)+x+2=52\)
\(\Leftrightarrow60x^2+15x-8x^2-2x-26x^2+39x+8x^2-12x-x^2-2x+x+2+x+2=52\)
\(\Leftrightarrow33x^2+40x+4=52\)
\(\Leftrightarrow33x^2+40x=48\)
...
Bài 1 có ng làm rồi nên mình không làm nx nhé.
2) a) Rút gọn
P=\(3x\left(4x+1\right)+5x^2-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)
P= \(12x^2+3x+5x^3-12x^3-36x+5x^2-5x^3\)
P= \(-33x\)
b) |x| = 2
\(\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Với x = 2 \(\Rightarrow\) P = -33 . 2 = -66
Với x = -2 \(\Rightarrow\) P = -33 . (-2) = 66
c) Để P = 2017 \(\Rightarrow\) -33x = 2017 \(\Rightarrow\) x = \(-\dfrac{2017}{33}\)
Bài 3: Giải
f(x) = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
f(x) = \(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
f(x) = \(\left(x^2+5x\right)^2-6^2\) ( Hằng đẳng thức số 3 )
f(x) = \(\left(x^2+5x\right)^2-36\ge-36\) với mọi x
Vậy \(Min_{f\left(x\right)}\) = -36 khi x = 0 hoặc x = -5
\(M=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\) Do \(\left(x-2\right)^2\ge0=>\left(x-2\right)^2-3\ge-3\)
Vậy min M=-3 khi x=2
\(N=x^2+10x+50=x^2+10x+25+25=\left(x+5\right)^2+25.\) Do \(\left(x+5\right)^2\ge0\Rightarrow\left(x+5\right)^2+25\ge25\Rightarrow N_{min}=25\) khi x=-5
\(P=x^2+12x-1=x^2+12x+36-37=\left(x+6\right)^2-37\) Do \(\left(x+6\right)^2\ge0\Rightarrow\left(x+6\right)^2-37\ge-37\Rightarrow P_{min}=-37\) khi x=-6
\(Q=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\) Do \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow Q_{min}=\frac{3}{4}\) khi \(x=\frac{1}{2}\)
\(R=x^2-3x+2=\left(x^2-3x+2,25\right)-0,5=\left(x-1,5\right)^2-0,5\) Do \(\left(x-1,5\right)^2\ge0\Rightarrow\left(x-1,5\right)^2-0,5\ge-0,5\Rightarrow R_{min}=-0,5\) khi x=1,5
\(S=2x^2-8x+1=2\left(x^2-4x+2\right)-3=2\left(x-2\right)^2-3\) Do \(2\left(x-2\right)^2\ge0\Rightarrow2\left(x-2\right)^2-3\ge-3\Rightarrow S_{min}=-3\) khi x=2
\(T=2x^2+6x+1=2\left(x^2+3x+2,25\right)-3,5=2\left(x+1,5\right)^2-3,5\) Do \(2\left(x+1,5\right)^2\ge0\Rightarrow2\left(x+1,5\right)^2-3,5\ge-3,5\Rightarrow T_{min}=-3,5\) khi x=-1,5
\(V=3x^2+x+2=3\left(x^2+\frac{1}{3}x+\frac{1}{36}\right)+\frac{23}{24}=3\left(x+\frac{1}{6}\right)^2+\frac{23}{24}\) Do\(3\left(x+\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x+\frac{1}{6}\right)^2+\frac{23}{24}\ge\frac{23}{24}\Rightarrow V_{min}=\frac{23}{24}\) khi \(x=\frac{1}{6}\)