Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(5x+14y-2xy=35\)
\(\Leftrightarrow\left(5x-35\right)+\left(14y-2xy\right)=0\)
\(\Leftrightarrow\left(7-x\right)\left(2y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=2,5\end{cases}}\)
Thế x = 7 vào cái còn lại ta được
\(7^2-4y^2=24\)
\(\Leftrightarrow y^2=\frac{25}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=-\frac{5}{2}\end{cases}}\)
Thế y = 2,5 vào cái còn lại ta được
\(x^2-4.2,5^2=24\)
\(\Leftrightarrow x^2=49\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
a) \(P+\left(4x^2-5xy-y^2\right)=5x^2+10xy-2y^2\)
\(P=5x^2+10xy-2y^2-4x^2+5xy+y^2\)
\(P=x^2+15xy-y^2\)
Vậy....
b) \(\left(2xy+y^2\right)-P=3x^2-6xy+y^2\)
\(P=2xy+y^2-3x^2+6xy-y^2\)
\(P=-3x^2+8xy\)
Vậy....
a) P + ( 4x2 - 5xy - y2 ) = 5x2 + 10xy - 2y2
<=> P = 5x2 + 10xy - 2y2 - ( 4x2 - 5xy - y2 )
= 5x2 + 10xy - 2y2 - 4x2 + 5xy + y2
= x2 + 15xy - y2
b) ( 2xy + y2 ) - P = 3x2 -6xy + y2
<=> P = ( 2xy + y2) - ( 3x2 - 6xy + y2 )
= 2xy + y2 - 3x2 + 6xy -y2
= 8xy - 3x2
\(C=\left(2x^2-6xy+4y^2\right)-\left(-5x^2+4xy+7y^2\right)\)
\(=2x^2-6xy+4y^2+5x^2-4xy-7y^2\)
\(=\left(2x^2+5x^2\right)-\left(6xy+4xy\right)+\left(4y^2-7y^2\right)\)
\(=7x^2-10xy-3y^2\)
Vậy \(C=7x^2-10xy-3y^2\)
= −5x2y+12xy2+7xy−10xy+3x2y−4xy2−5x2y+12xy2+7xy−10xy+3x2y−4xy2
= −2x2y+12xy2−3xy
Ta có: đa thức: \(C\left(x\right)=3x^2+12\)
Mà \(3x^2\ge0\)
Do đó: \(3x^2+12\ge12>0\)
Do đó da thức trên vô nghiệm
\(C=\left(5x^2-10xy+5y^2\right)+30\left(x-y\right)+\left(2y^2+16y+79\right)\)
\(=5\left(x-y\right)^2+30\left(x-y\right)+45+2\left(y^2+8y+16\right)+2\)
\(=5\left(x-y+3\right)^2+2\left(y+4\right)^2+2\ge2\)
Dấu "=" xảy ra <=> y + 4 = 0 và x - y + 3 = 0 <=> y = -4 và x = -7
Vậy min C = 2 tại y = -4 và x = -7
Ta có:
\(C=5x^2+7y^2-10xy+30x-14y+79\)
\(\Rightarrow C=\left(5x^2-10x\left(y-3\right)+5\left(y^2-6y+9\right)\right)+\left(2y^2+16y+32\right)+2\)
\(\Rightarrow C=5\left(x^2-2x\left(y-3\right)+5\left(y^2-6y+9\right)\right)+2\left(y^2+16y+32\right)+2\)
\(\Rightarrow C=5\left(x^2-2x\left(y-3\right)+\left(y-3\right)^2\right)+2\left(y+4\right)^2+2\)
\(\Rightarrow C=5\left(x-y+3\right)^2+2\left(y+4\right)^2+2\)
\(\Rightarrow C\ge5\times0+2\times0+2\)
\(\Rightarrow C\ge2\)
Dấu = xảy ra khi\(\hept{\begin{cases}x-y+3=0\\y+4=0\end{cases}\Rightarrow y=-4,}x=-7\)
#Cừu