\(P=\frac{\sqrt{1-x^3}-3x+5}{\sqrt{1-x^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

ĐKXĐ: \(x\ge1;y\ge25\)

\(D=\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}+\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\)

Vì x>=1,y>=25 => x-1>=0,y-25>=0 

=> D >= 0

Dấu "=" xảy ra <=> x=1,y=25

Vậy MinD=0 khi x=1,y=25

Ta có: \(\left(x-2\right)^2+25\ge25;\left(y-50\right)^2+1\ge1\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{\left(x-2\right)^2+25}}\le\frac{1}{x}\sqrt{\frac{x-1}{25}};\frac{1}{y}\sqrt{\frac{y-25}{\left(y-50\right)^2+1}}\le\frac{1}{y}\sqrt{y-25}\)

=>\(D\le\frac{1}{x}\sqrt{\frac{x-1}{25}}+\frac{1}{y}\sqrt{y-25}\)

Vì x>=1 => x-1>=0. Áp dụng bđt cosi với 2 số dương x-1 và 1 ta có:

\(\sqrt{x-1}=\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

=>\(\frac{1}{x}\sqrt{\frac{x-1}{25}}\le\frac{1}{x}\cdot\frac{x}{2}\cdot\frac{1}{\sqrt{25}}=\frac{1}{10}\)

Vì y>=25 => y-25>=0. ÁP dụng bđt cô si cho 2 số dương 25 và y-25 ta có:

\(\sqrt{y-25}=\frac{\sqrt{25\left(y-25\right)}}{5}\le\frac{25+y-25}{2.5}=\frac{y}{10}\)

=>\(\frac{1}{y}\sqrt{y-25}=\frac{1}{y}\cdot\frac{y}{10}=\frac{1}{10}\)

Suy ra \(D\le\frac{1}{10}+\frac{1}{10}=\frac{1}{5}\)

Dấu "=" xảy ra <=> x=2,y=50

Vậy MaxD = 1/5 khi x=2,y=50

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)

12 tháng 7 2019

Akai Haruma Bonking

1 tháng 7 2021

\(a,\sqrt{1-3x}\)

\(< =>1-3x\ge0\)

\(3x\le1\)

\(x\le\frac{1}{3}\)

\(b,-3< 0\)

\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)

\(x< \frac{5}{2}\)

\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)

\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)

\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)

\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)

\(d,\frac{x-5}{\sqrt{-4x}}\)

\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)

\(-4x>0\)

\(x< 0\)

\(e,\sqrt{x-2}+\frac{1}{x-3}\)

\(\sqrt{x-2}\ge0;x-3\ne0\)

\(x\ge2;x\ne3\)

\(f,\sqrt{-\left(x-2\right)^2}\)

\(\sqrt{-\left(x-2\right)^2}\ge0\)

\(-\left|x-2\right|\ge0\)

\(-\left|x-2\right|\le0\)

lên chỉ có 1 nghiệm duy nhất là 

\(x-2=0< =>x=2\)

\(g,\sqrt{\frac{-2x^2}{3x+2}}\)

\(-2x^2\le0\)

\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)

\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)

1 tháng 7 2021

a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)

\(\Leftrightarrow1-3x\ge0\)

\(\Leftrightarrow-3x\ge-1\)

\(\Leftrightarrow x\ge\frac{1}{3}\)

b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)

\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)

\(\Leftrightarrow2x-5>0\)

\(\Leftrightarrow2x>5\)

\(\Leftrightarrow x>\frac{5}{2}\)

c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)

\(\Leftrightarrow3x+2-2x+3\ge0\)

\(\Leftrightarrow x+5\ge0\)

\(\Leftrightarrow x\ge-5\)

d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)

\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)

\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)

\(\Leftrightarrow-2x>0\)

\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)

f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)

\(\Leftrightarrow-x^2+4x-4\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2\ge0\)

không có z thỏa mãn

g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)

\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)

\(\Leftrightarrow3x+2>0\)

\(\Leftrightarrow3x>-2\)

\(\Leftrightarrow x>\frac{-2}{3}\)

@Cừu

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:
a)

\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

b)

\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)

\(\Leftrightarrow 1\leq x\leq 5\)

c)

\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)

d)

\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)

e) \(x\in\mathbb{R}\)

f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $x$ để hàm số tồn tại

g)

\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow 1< x\leq 6\)