Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\dfrac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\)
\(B=\dfrac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}\)
\(B=\dfrac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}\)
\(B=x-1\)
\(B=A+1\Leftrightarrow\sqrt{x}-1+1=x-1\)
\(\Leftrightarrow x-\sqrt{x}-1=0\)
\(\Leftrightarrow x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}-\dfrac{\sqrt{5}}{2}\right)\left(\sqrt{x}-\dfrac{1}{2}+\dfrac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\left(\sqrt{5}+1\right)^2}{4}\\x=\dfrac{\left(1-\sqrt{5}\right)^2}{4}\end{matrix}\right.\)
câu A sửa lại đề 1 chút
\(A=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-2}\)
\(A=\dfrac{x-2\sqrt{x}-\sqrt{x}+2}{\sqrt{x}-2}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(A=\sqrt{x}-1\)
có \(x=4-2\sqrt{3}\)
\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{3}-1\)
khi đó \(A=\sqrt{x}-1\Leftrightarrow A=\sqrt{3}-1-1=\sqrt{3}-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: \(\sqrt{4-x^2}>=0\)
Dấu '=' xảy ra khi x=2 hoặc x=-2
b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)
\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)
Dấu '=' xảy ra khi x=1/2
c: \(x+\sqrt{x}+1>=1\)
=>1/(x+căn x+1)<=1
Dấu '=' xảy ra khi x=0
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{-3\sqrt{x}+3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
b: Khi \(x=4-2\sqrt{3}\) vào A, ta được:
\(A=\dfrac{-3\left(\sqrt{3}-1\right)+3}{\left(\sqrt{3}-1+3\right)\left(\sqrt{3}-1+1\right)}\)
\(=\dfrac{-3\sqrt{3}+6}{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}=\dfrac{-3+2\sqrt{3}}{2+\sqrt{3}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)A \(=\dfrac{\sqrt{x}+1}{x+4\sqrt{x}+4}:\left(\dfrac{x}{x+2\sqrt{x}}+\dfrac{x}{\sqrt{x}+2}\right)\)
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x^2}+2.2.\sqrt{x}+2^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)
A\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x+x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)
A\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+x\sqrt{x}}\)
A\(=\dfrac{\left(\sqrt{x}+1\right)\left[\sqrt{x}\left(\sqrt{x}+2\right)\right]}{\left(\sqrt{x}+2\right)^2.\left(x+x\sqrt{x}\right)}\)
A\(=\dfrac{\left(\sqrt{x}+1\right).\sqrt{x}}{\left(\sqrt{x}+2\right).\left[x\left(\sqrt{x}+1\right)\right]}\)
A\(=\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right).x}\)
A\(=\dfrac{1}{\left(\sqrt{x}+2\right)\sqrt{x}}\)
A\(=\dfrac{1}{x+2\sqrt{x}}\)
b) \(\dfrac{1}{x+2\sqrt{x}}\ge\dfrac{1}{3\sqrt{x}}\)
\(\Leftrightarrow\dfrac{1}{x+2\sqrt{x}}-\dfrac{1}{3\sqrt{x}}\ge0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-x-2\sqrt{x}}{\left(x+2\sqrt{x}\right)\left(3\sqrt{x}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-x}{3x\sqrt{x}+6x}\ge0\)
\(\Leftrightarrow\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(3x+6\sqrt{x}\right)}\ge0\)
\(\Leftrightarrow\dfrac{1-\sqrt{x}}{3x+6\sqrt{x}}\ge0\)
ĐKXĐ: x\(\ge0\)
=\(\dfrac{\left(x+4\sqrt{x}+4\right)-1}{x+4\sqrt{x}+4}\) =1 -\(\dfrac{1}{\left(\sqrt{x}+2\right)^2}\)
Ta luôn có: \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x\(\ge0\)
\(\Rightarrow\dfrac{1}{\left(\sqrt{x}+2\right)^2}\le\dfrac{1}{4}\) với mọi x\(\ge0\)
\(\Rightarrow1-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\le1-\dfrac{1}{4}\) với mọi x\(\ge0\)
\(\Rightarrow1-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\le\dfrac{3}{4}\) với mọi x\(\ge0\)