\(M=\dfrac{x+4\sqrt{x}+3}{x+4\sqrt{x}+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

ĐKXĐ: x\(\ge0\)

=\(\dfrac{\left(x+4\sqrt{x}+4\right)-1}{x+4\sqrt{x}+4}\) =1 -\(\dfrac{1}{\left(\sqrt{x}+2\right)^2}\)

Ta luôn có: \(\left(\sqrt{x}+2\right)^2\ge4\) với mọi x\(\ge0\)

\(\Rightarrow\dfrac{1}{\left(\sqrt{x}+2\right)^2}\le\dfrac{1}{4}\) với mọi x\(\ge0\)

\(\Rightarrow1-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\le1-\dfrac{1}{4}\) với mọi x\(\ge0\)

\(\Rightarrow1-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\le\dfrac{3}{4}\) với mọi x\(\ge0\)

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

25 tháng 4 2018

\(B=\dfrac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\)

\(B=\dfrac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}\)

\(B=\dfrac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}\)

\(B=x-1\)

\(B=A+1\Leftrightarrow\sqrt{x}-1+1=x-1\)

\(\Leftrightarrow x-\sqrt{x}-1=0\)

\(\Leftrightarrow x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}-\dfrac{\sqrt{5}}{2}\right)\left(\sqrt{x}-\dfrac{1}{2}+\dfrac{\sqrt{5}}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\left(\sqrt{5}+1\right)^2}{4}\\x=\dfrac{\left(1-\sqrt{5}\right)^2}{4}\end{matrix}\right.\)

25 tháng 4 2018

câu A sửa lại đề 1 chút

\(A=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-2}\)

\(A=\dfrac{x-2\sqrt{x}-\sqrt{x}+2}{\sqrt{x}-2}\)

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(A=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(A=\sqrt{x}-1\)

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3}-1\)

khi đó \(A=\sqrt{x}-1\Leftrightarrow A=\sqrt{3}-1-1=\sqrt{3}-2\)

10 tháng 5 2018
https://i.imgur.com/nH0jngt.jpg
10 tháng 5 2018
https://i.imgur.com/s11CjBM.jpg
22 tháng 4 2018

Phần 2 tớ kh rõ đề bài bạn ạ ????Hỏi đáp Toán

Bài 2: 

a: \(\sqrt{4-x^2}>=0\)

Dấu '=' xảy ra khi x=2 hoặc x=-2

b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)

\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)

Dấu '=' xảy ra khi x=1/2

c: \(x+\sqrt{x}+1>=1\)

=>1/(x+căn x+1)<=1

Dấu '=' xảy ra khi x=0

a: \(A=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\sqrt{x}+3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

b: Khi \(x=4-2\sqrt{3}\) vào A, ta được:

\(A=\dfrac{-3\left(\sqrt{3}-1\right)+3}{\left(\sqrt{3}-1+3\right)\left(\sqrt{3}-1+1\right)}\)

\(=\dfrac{-3\sqrt{3}+6}{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}=\dfrac{-3+2\sqrt{3}}{2+\sqrt{3}}\)

8 tháng 6 2018

a)A \(=\dfrac{\sqrt{x}+1}{x+4\sqrt{x}+4}:\left(\dfrac{x}{x+2\sqrt{x}}+\dfrac{x}{\sqrt{x}+2}\right)\)

A=\(\dfrac{\sqrt{x}+1}{\sqrt{x^2}+2.2.\sqrt{x}+2^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)

A\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x+x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)

A\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+x\sqrt{x}}\)

A\(=\dfrac{\left(\sqrt{x}+1\right)\left[\sqrt{x}\left(\sqrt{x}+2\right)\right]}{\left(\sqrt{x}+2\right)^2.\left(x+x\sqrt{x}\right)}\)

A\(=\dfrac{\left(\sqrt{x}+1\right).\sqrt{x}}{\left(\sqrt{x}+2\right).\left[x\left(\sqrt{x}+1\right)\right]}\)

A\(=\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right).x}\)

A\(=\dfrac{1}{\left(\sqrt{x}+2\right)\sqrt{x}}\)

A\(=\dfrac{1}{x+2\sqrt{x}}\)

8 tháng 6 2018

b) \(\dfrac{1}{x+2\sqrt{x}}\ge\dfrac{1}{3\sqrt{x}}\)

\(\Leftrightarrow\dfrac{1}{x+2\sqrt{x}}-\dfrac{1}{3\sqrt{x}}\ge0\)

\(\Leftrightarrow\dfrac{3\sqrt{x}-x-2\sqrt{x}}{\left(x+2\sqrt{x}\right)\left(3\sqrt{x}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-x}{3x\sqrt{x}+6x}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(3x+6\sqrt{x}\right)}\ge0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{3x+6\sqrt{x}}\ge0\)