Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Bài này tìm max _ giá trị lớn nhất em nhé
\(A=-\left(x^2+2xy+y^2-2x.3-2.y.3+3^2\right)+4y-2y^2+1\)
\(=-\left(x+y-3\right)^2-2\left(y^2-2y+1\right)+3\)
\(=-\left(x+y-3\right)^2-2\left(y-1\right)^2+3\le3\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}y-1=0\\x+y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=2\end{cases}}\)
max A=3 <=> x=2, y=1
đề là tìm max thì đúng nhé
\(A=-x^2-3y^2-2xy+6x+10y-8\)
\(A=-\left[x^2+2x\left(y-3\right)+\left(y-3\right)^2\right]-2\left(y^2-2y+1\right)+3\)
\(A=-\left(x+y-3\right)^2-2\left(y-1\right)^2+3\)
Ta có:
\(\hept{\begin{cases}-\left(x+y-3\right)^2\le0\forall x;y\\-2\left(y-1\right)^2\le0\forall y\end{cases}}\)
\(\Rightarrow-\left(x+y-3\right)^2-2\left(y-1\right)^2+3\le3\forall x;y\)
\(\Rightarrow A\le3\)\(\forall x;y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}-\left(x+y-3\right)^2=0\\-2\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\y-1=0\end{cases}\Leftrightarrow}}\hept{\begin{cases}x+1-3=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy \(A_{max}=3\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)