K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(A=x^2+2y^2+2xy+2x-4y+2020\)

      \(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)

        \(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)

Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)

Chúc bạn học tốt !!!

22 tháng 9 2019

Tham khảo :

\(A=x^2+2y^2+2xy+2x-4y+2020\)

\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)

Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)

22 tháng 6 2016

\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)

\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)

Min A=-3 khi x=2;y=-3

22 tháng 6 2016

\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)

\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)

Min B=-3 khi y=1;x=1

10 tháng 1 2017

a)Min=-3 khi x=2 và y=-3

b)Min=7/2 khi x=1/2 và y=-1

11 tháng 1 2017

A có thể giải rõ giúp e dc k

21 tháng 9 2016

Min A=2018 khi x =0 y=0 k mình nha

21 tháng 9 2016

chỉ cho mình cách giải luôn nhé bạn