K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

tìm min của biểu thức đó nha 

26 tháng 7 2019

I I  là dấu giá trị tuyệt đối nhé

26 tháng 7 2019

|7 + 5x| = 1 - 4x

=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)

=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)

|4x- 2x| + 1 = 2x

=> |4x2 - 2x| = 2x - 1

=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)

=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)

=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)

Vậy ...

NV
22 tháng 9 2020

a/ ĐKXĐ: ...

\(\sqrt{x-7}-\frac{1}{2}+\sqrt{x-5}-\frac{3}{2}=0\)

\(\Leftrightarrow\frac{x-\frac{29}{4}}{\sqrt{x-7}+\frac{1}{2}}+\frac{x-\frac{29}{4}}{\sqrt{x-5}+\frac{3}{2}}=0\)

\(\Leftrightarrow\left(x-\frac{29}{4}\right)\left(\frac{1}{\sqrt{x-7}+\frac{1}{2}}+\frac{1}{\sqrt{x-5}+\frac{3}{2}}\right)=0\)

\(\Leftrightarrow x=\frac{29}{4}\)

b/ \(\Leftrightarrow\sqrt{x^2-6x+9}=3x+2\left(x\ge-\frac{2}{3}\right)\)

\(\Leftrightarrow x^2-6x+9=9x^2+12x+4\)

\(\Leftrightarrow8x^2-18x-5=0\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{1}{4}\end{matrix}\right.\)

c/

\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5x^2\left(x^2+2\right)+9}=5-2\left(x+1\right)^2\)

Do \(\left\{{}\begin{matrix}3\left(x+1\right)^2+9\ge9\\5x^2\left(x^2+2\right)\ge9\end{matrix}\right.\) \(\Rightarrow VT\ge\sqrt{9}+\sqrt{9}=6\)

\(VP=5-2\left(x+1\right)^2\le5< VP\)

Pt luôn vô nghiệm

17 tháng 8 2020

tui lớp 4 nên ko bít

1: =>x+1=5

=>x=4

2: \(\Leftrightarrow\left|x-5\right|=2x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+2-x+5\right)\left(2x+2+x-5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x+7\right)\left(3x-3\right)=0\end{matrix}\right.\Leftrightarrow x=1\)

3: \(\Leftrightarrow\sqrt{3+x}\left(\sqrt{3-x}+1\right)=0\)

=>x+3=0

=>x=-3

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 3:

Áp dụng BĐT Bunhiacopxky ta có:

\((2x+3y)^2\leq (2x^2+3y^2)(2+3)\)

\(\Leftrightarrow A^2\leq 5(2x^2+3y^2)\leq 5.5\)

\(\Leftrightarrow A^2\leq 25\Leftrightarrow A^2-25\leq 0\)

\(\Leftrightarrow (A-5)(A+5)\leq 0\Leftrightarrow -5\leq A\leq 5\)

Vậy \(A_{\min}=-5\Leftrightarrow (x,y)=(-1;-1)\)

\(A_{\max}=5\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2017

Bài 4:

Lời giải:

\(B=\sqrt{x-1}+\sqrt{5-x}\)

\(\Rightarrow B^2=(\sqrt{x-1}+\sqrt{5-x})^2=4+2\sqrt{(x-1)(5-x)}\)

Vì \(\sqrt{(x-1)(5-x)}\geq 0\Rightarrow B^2\geq 4\)

Mặt khác \(B\geq 0\)

Kết hợp cả hai điều trên suy ra \(B\geq 2\)

Vậy \(B_{\min}=2\).

Dấu bằng xảy ra khi \((x-1)(5-x)=0\Leftrightarrow x\in\left\{1;5\right\}\)

---------------------------------------

\(A=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\)

\(\Rightarrow A^2=2x^2+2+2\sqrt{(x^2+x+1)(x^2-x+1)}\)

\(\Leftrightarrow A^2=2x^2+2+2\sqrt{(x^2+1)^2-x^2}=2x^2+2+2\sqrt{x^4+1+x^2}\)

Vì \(x^2\geq 0\forall x\in\mathbb{R}\)

\(\Rightarrow A^2\geq 2+2\sqrt{1}\Leftrightarrow A^2\geq 4\)

Mà $A$ là một số không âm nên từ \(A^2\geq 4\Rightarrow A\geq 2\)

Vậy \(A_{\min}=2\Leftrightarrow x=0\)

1 tháng 5 2020

câu 2,3 thì mik bt lm . nhg câu 1 bạn lm đc o

1 tháng 5 2020

Câu 3:

(x + 1) (x + 2) (x + 4) (x + 5) = 40

<=> (x + 1)(x + 5) (x + 2)(x + 4) = 40

<=> (x2 + 6x + 5) (x2 + 6x + 8) = 40 (1)

Đặt a = x2 + 6x + 5

Ta có:

(1) <=> a(a + 3) = 40 (\(a\ge0\))

<=> a2 + 3a - 40 = 0

<=> a2 - 5a + 8a - 40 = 0

<=> a(a - 5) + 8(a - 5) = 40

<=> (a - 5) (a + 8) = 40

<=> \(\left[{}\begin{matrix}a-5=0\\a+8=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}a=5\\a=-8\end{matrix}\right.\) (TM)

Khi đó:

\(\left[{}\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)

+ Với: x2 + 6x + 5 = 5, ta có

x2 + 6x + 5 = 5

=> x2 + 6x = 0

<=> x(x + 6) = 0

<=> \(\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

+ Với x2 + 6x + 5 = -8, ta có:

x2 + 6x + 5 = -8

(Tự giải cái này nhé. Mình không biết có đúng không)