
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : 4.|x - 2| ≥0∀x
=> 10 - 4.|x - 2| ≤10∀x
Vậy min của biểu thức là 10 khi x = 2
Ta có : 4.|x - 2| \(\ge0\forall x\)
=> 10 - 4.|x - 2| \(\le10\forall x\)
Vậy min của biểu thức là 10 khi x = 2


a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3

\(x^4\ge0;3x^2\ge0=>x^4+3x^2+2\ge0+0+2=2=>A_{min}=2<=>x=0\)
\(x^4\ge0=>x^4+5\ge5=>\left(x^4+5\right)^2\ge5^2=25=>B_{min}=25<=>x=0\)
tick nhé

Ta có : \(\left|x-1\right|\ge x-1\)
Dấu ''='' xảy ra khi và chỉ khi \(x\ge1\)
\(\Rightarrow B\ge3x-3+4-3x=1\)
\(\Rightarrow Bmin=1\)khi và chỉ khi \(x\ge1\)