K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

\(A=x^2+2y^2+3z^2-2xy+2xz-2x-2y-8z+2010\)

\(=x^2-2x\left(y-z+1\right)+\left(y-z+1\right)^2+y^2+2z^2-4y+2yz-6z+2009\)

\(=\left[x-\left(y-z+1\right)\right]^2+y^2-2y\left(2-z\right)+\left(2-z\right)^2-\left(2-z\right)^2+2z^2-6z+2009\)

\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+z^2-2z+2005\)

\(=\left(x-y+z-1\right)^2+\left(y-2+z\right)^2+\left(z-1\right)^2+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y+z-1=0\\y-2+z=0\\z-1=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)

Vậy \(B_{min}=2004\Leftrightarrow x=y=z=1\)

21 tháng 8 2019

Thanks for answering!!!!!

7 tháng 3 2016

Bài 1 :

=-5(x^2+4/5x+19/25)

=-5(x^2+2x.2/5+4/25+3/5)

=-5(x+2/5)^2-3

Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3

Vậy Min là-3

a: \(2x^3+x^2-13x+6\)

\(=2x^3-4x^2+5x^2-10x-3x+6\)

\(=\left(x-2\right)\left(2x^2+5x-3\right)\)

\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)

b: \(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)

=>x-2=0 và x+y-1=0

=>x=2 và y=-1

\(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-z^2\right)\)

\(=3\left(\left(x+y\right)^2-z^2\right)\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

\(3x^2+6xy+3y^2-3z^2\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-3\right)\left(z-y-x\right)\left(z+y+x\right)\)

\(2x^2+4x+2-2y^2\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-2\right)\left(y-x-1\right)\left(y+x+1\right)\)

\(2x^2-2xy-4x+4y\)

\(\text{Phân tích thành nhân tử}\)

\(\left(-2\right)\left(x-2\right)\left(y-x\right)\)

16 tháng 8 2018

\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)

\(2D\ge10\) => D>=5 khi x=2y=6

\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)

F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6

\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)

\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)

E>=1998 khi 2x=y=2

bài 4;

\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)

\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)

khi x=1/6

bài 5:

\(a,\left(x+2\right)^2=0=>x=-2\)

\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)

c,\(x^2+2y^2-2xy-2x+2=0\)

\(x^2-4xy+4y^2+x^2-4x+4=0\)

\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)

đây nhá bạn, khá tốn time của mình huhu