\(A=\frac{9-x}{2x}+\frac{2}{x}\)  với 0<x<2

giúp mình nha mn 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

  1. A = 9/(2/x-1) + 2/x = 9/(y-1) + y (với y = 2/x > 1).
Sử dụng BĐT Cauchy (Cô-si): A = 1+ 9/(y-1) + (y-1) >= 1+ 2*căn9 = 7 (vì y - 1 > 0 do y > 1). Dấu = xảy ra khi 9/(y-1) = (y-1) tương đương y-1 = 3 hay y = 4 tức x = 1/2. 

2. B = 3(1-x + x)/(1-x) + 4/x = 3 + 3x/(1-x) + 4/x = 3 + 12/(4/x - 4) + 4/x = 7 + 12/(4/x - 4) + (4/x - 4) >= 7 + 4căn3. Dấu = khi 12/(4/x - 4) = (4/x - 4) hay 4/x - 4 = 2căn3 (bạn tự tìm x nhé). 

3. Sử dụng BĐT Bunhi: Q*2 = [x²/(y+z) + y²/(z+x) + z²/(x+y)]*[(y+z) + (z+x) + (x+y)] >= [(x/căn(y+z))*căn(y+z) + y/căn(x+z))*căn(x+z) + z/căn(y+x))*căn(y+x)]^2 = (x+y+z)^2 = 4 hay Q>=1/2. 
Dấu = xảy ra khi x = y = z = 2/3. 

4. Sử dụng BĐT Bunhi: (x²)² + (y²)² >= [(x²) + (y²)]²/2 >= [(x+y)²/2]²/2 = 1/8. 
 

25 tháng 6 2017

cảm ơn bạn đã giúp nha =)))) 

7 tháng 11 2015

A= (2(1-x)+2x)/ (1-x) + ((1-x)+x)/x 
= 2+ 2x/(1-x) + (1-x)/x + 1 =2x/(1-x) + (1-x)/x + 3 
do 0<x<1 nên sử dụng bđt côsi cho hai số dương ta có 
2x/(1-x) + (1-x)/x>= 2. căn(2) (*) 
từ đó ta cộng hai vế của bđt (*) cho 3 ta đc 
A >=2.căn(2) +3 
=> min A = 2.căn(2) + 3 
dấu "=" xảy ra khi và chỉ khi: 2x/(1-x) = (1-x)/x <> x^2 + 2x - 1=0 <> x= -1+ căn(2) ( do 0<x<1)

12 tháng 7 2017

a/ \(x^2-2x-1< 0\)

\(\Leftrightarrow\left(x-1\right)^2< 2\)

\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)

\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

Câu 2 tự làm nhé.

12 tháng 7 2017

\(x^2-2x-1< 0\)

\(\left(x-2\right)x-1< 0\)

\(\left(x-2\right)x\le1\)

\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

27 tháng 6 2017

\(A=\frac{3}{1-x}+\frac{4}{x}\ge\frac{\left(\sqrt{3}+2\right)^2}{1-x+x}=7+4\sqrt{3}\)

Dấu = xảy ra khi: \(x=\frac{2}{\sqrt{3}+2}\)

Ukm

It's very hard

l can't do it 

Sorry!

 
24 tháng 11 2016

Đặt \(Z=\frac{2x}{1-x}+\frac{1-x}{x}\)

Áp dụng bđt Cô si với 2 số dương là \(\frac{2x}{1-x}\)\(\frac{1-x}{x}\) ta có:

\(Z=\frac{2x}{1-x}+\frac{1-x}{x}\ge2.\sqrt{\frac{2x}{1-x}.\frac{1-x}{x}}=2.\sqrt{2}\)

Dấu "=" xảy ra khi \(\frac{2x}{1-x}=\frac{1-x}{x}\)

<=> 2x2 = (1 - x)2 <=> \(\sqrt{2x^2}=\sqrt{\left(1-x\right)^2}\Leftrightarrow\left|x.\sqrt{2}\right|=\left|1-x\right|\)

Mà theo đề bài 0 < x < 1 nên \(\begin{cases}x.\sqrt{2}>0\\1-x>0\end{cases}\)\(\Rightarrow\begin{cases}\left|x.\sqrt{2}\right|=x.\sqrt{2}\\\left|1-x\right|=1-x\end{cases}\)

Do đó, \(x.\sqrt{2}=1-x\Leftrightarrow x.\sqrt{2}+x=1\Leftrightarrow x.\left(\sqrt{2}+1\right)=1\)

\(\Leftrightarrow x=\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1\)

Xét hiệu: \(y-Z=\left(\frac{2}{1-x}+\frac{1}{x}\right)-\left(\frac{2x}{1-x}+\frac{1-x}{x}\right)=\frac{2-2x}{1-x}+\frac{1-1+x}{x}=2+1=3\)

\(\Leftrightarrow y=Z+3=2.\sqrt{2}+3\)

Vậy Min y = \(2.\sqrt{2}+3\) khi \(x=\sqrt{2}-1\)

 

 

24 tháng 11 2016

soyeon_Tiểubàng giải, bạn học lớp 7 mà giải được toán lớp 9 luôn á?

22 tháng 8 2019

\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

b.\(Q< 1\)

\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)

\(\Leftrightarrow4\sqrt{x}-8< 0\)

\(\Leftrightarrow0\le x< 4\)

Vay de Q<1 thi \(0\le0< 4\)

23 tháng 11 2016

tu Dk dau bai => y>0

\(y=\frac{x+1}{x-x^2}\)

yx^2-(y-1)x+1

delta(x)=(y-1)^2-4y=y^2-6y+1>=0

delta(y)=9-1=8

\(y1,2=3+-2\sqrt{2}\)

dieu kien can \(3-2\sqrt{2}\le0=>y\ge3+2\sqrt{2}\) 

dieu kien du 0<(y-1)/y<1 hien nhien dung

Min y=3+2.can(2) 

khi x=\(\frac{3+2\sqrt{2}-1}{2\left(3+2\sqrt{2}\right)}=\frac{1+\sqrt{2}}{3+2\sqrt{2}}\)

23 tháng 11 2016

Nhóm hợp lí và áp dụng BĐT Bunhiacopxki , ta có

\(Y=\frac{2}{1-x}+\frac{1}{x}=\left(\frac{2}{1-x}+\frac{1}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\frac{2}{1-x}.\left(1-x\right)}+\sqrt{\frac{1}{x}.x}\right)^2\)

\(\Leftrightarrow Y\ge\left(\sqrt{2}+1\right)^2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{2}{\left(1-x\right)^2}=\frac{1}{x^2}\\0< x< 1\end{cases}}\Leftrightarrow x=\sqrt{2}-1\)

Vậy min Y = \(\left(\sqrt{2}+1\right)^2\) khi \(x=\sqrt{2}-1\)