\(\frac{3}{2+\sqrt{-x^2+2x+7}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A đạt Min khi: \(2+\sqrt{-x^2+2x+7}\) lớn nhất <=> \(\sqrt{-x^2+2x+7}\) lớn nhất

\(\sqrt{\left(-x^2+2x+7\right)}=\sqrt{\left[-\left(-x^2+2x+7\right)\right]}=\sqrt{\left[-\left(x-1\right)^2+8\right]}\)

\(=\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}\)

Áp dụng BĐT Cô si, ta có: \(\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}\Leftarrow\frac{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}{2}\Leftarrow2\sqrt{2}\)

\(\Rightarrow2+\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}\Leftarrow2\sqrt{2}+2\)

\(\frac{3}{\sqrt{\left[\left(2\sqrt{2}-x+1\right)\left(2\sqrt{2}+x-1\right)\right]}}\ge\frac{3}{\left(2\sqrt{2}+2\right)}\)hay \(A\ge\frac{3}{\left(2\sqrt{2}+2\right)}\)

Dấu = xảy ra <=> \(2\sqrt{2}-x+1=2\sqrt{2}-x+1=2\sqrt{2}+x-1\Leftrightarrow x=1\)

Vậy: \(Min_A=\frac{3}{2+\sqrt{-x^2+2x+7}}\)tại x = 1

P/s: Tôi làm bừa ko bt có đúng ko

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

20 tháng 10 2020

Bài 1 : 

+) ĐKXĐ  : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a) Ta có : 

\(x=4-2\sqrt{3}\)

\(\Leftrightarrow x=3-2\sqrt{3}+1\)

\(\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)( Thỏa mãn ĐKXĐ ) 

Vậy tại \(x=\left(\sqrt{3}-1\right)^2\)thì giá trị của biểu thức A là : 

\(A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-3}=\frac{\sqrt{3}-1+1}{\sqrt{3}-1-3}=\frac{\sqrt{3}}{\sqrt{3}-4}=\frac{-\sqrt{3}\left(\sqrt{3}+4\right)}{7}\)

b) 

\(B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{-3-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Ta có :

\(P=A:B\)

\(\Leftrightarrow P=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{-3\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\frac{-\sqrt{x}-3}{3}\)

c) \(P=\frac{-\sqrt{x}-3}{3}\ge0\)

Dấu bằng xảy ra 

\(\Leftrightarrow-\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x}=-3\)( vô lí )

Vậy không tìm được giá trị nào của x để P đạt GTNN

30 tháng 9 2016

Em chỉ biết làm câu a thôi :

Mẫu của phân thức A dương mà tử âm nên Amin khi mẫu nhỏ nhất .Ta có :

\(\frac{x^2}{8}-2x+17=\left(\frac{x}{2\sqrt{2}}\right)^2-2.\frac{x}{2\sqrt{2}}.2\sqrt{2}+\left(2\sqrt{2}\right)^2+9\)

\(=\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2+9\ge9\Rightarrow\sqrt{\frac{x^2}{8}-2x+17}\ge\sqrt{9}=3\Rightarrow A_{min}=\frac{-3}{3}=-1\)khi :

\(\left(\frac{x}{2\sqrt{2}}-2\sqrt{2}\right)^2=0\Rightarrow\frac{x}{2\sqrt{2}}=2\sqrt{2}\Rightarrow x=8\)

Ukm

It's very hard

l can't do it 

Sorry!

 
11 tháng 10 2016

\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)

Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)

\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)

Vậy ......................

Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x