Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
1/ \(x^2-2x+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+7\)
\(=x^2-\frac{1}{2}\cdot2x+\left(\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+7\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)
\(\Rightarrow GTNNx^2-2x+7=\frac{27}{4}\)
với \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
2/ \(4x^2+2x+9\)
\(=\left(2x\right)^2+2\cdot2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+9\)
\(=\left(2x+\frac{1}{2}\right)^2-\frac{1}{4}+9\)
\(=\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\)
có \(\left(2x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\)
\(\Rightarrow GTNN4x^2+2x+9=\frac{35}{4}\)
với \(\left(2x+\frac{1}{2}\right)^2=0;x=-\frac{1}{4}\)
\(D=x^2+2x\left(y+2\right)+2y^2+6y+10\)
\(=x^2+2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2+2y+1\right)+5\)
\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+\left(y+1\right)^2+5\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+5\ge5\forall x\)
\(\Rightarrow\)Min D = 5 tại \(\hept{\begin{cases}x+y+2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)
=.= hk tốt!!
\(E=x^2+4xy+5y^2=x^2+4xy+4y^2+y^2=\left(x+2y\right)^2+y^2\ge0\forall x,y\)
=> Min E = 0 tại \(\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x
\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)
\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)
\(\Rightarrow x\in\left\{...\right\}\)
x2+y2+4/x2=8
=>x4+x2y2+4-8x2=0
=>x4-8x2+16=12-x2y2
=>(x2-4)2=12-x2y2
=>x2y2 ≤ 12 => |xy| ≤ \(\sqrt{12}=2\sqrt{3}\)
=>min xy \(\ge-2\sqrt{3}\)
xy min khi: x=2, y=\(-\sqrt{3}\)
x^4 + 2x^3 - 3x^2 - 4x + 10
= x^4 + 2x^3 - 3x^2 - 4x + 4 + 6
= (x2 + x - 2)2 + 6
= (x - 1)2(x + 2)2 + 6 \(\ge\)6
Dấu "=" xảy ra <=> x = 1 hoặc x = -2
A=(\(x^4\)-2\(x^2\)+1)+(\(x^2\)+2x+1)+5
A=\((x^2-1)^2+(x+1 )^2+5\)\(\ge\)\(5\)
Dấu bằng xảy ra\(\Leftrightarrow\)\(\begin{cases} x^2-1=0\\ x+1=0 \end{cases} \)
\(\Leftrightarrow\)\(x=-1\)
Vậy Amin=5 \(\Leftrightarrow\)x=-1