\(x^2+y^2=5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

Ý bạn là: Tìm \(A_{min}=x^2+y^2\) khi \(2x+y=5\)?

Áp dụng BĐT Bunhiacopski:

\(5^2=\left(2\cdot x+1\cdot y\right)^2\le\left(1^2+2^2\right)\left(x^2+y^2\right)=5A\\ \Leftrightarrow A\ge5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{x}{2}\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)

10 tháng 9 2019

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

29 tháng 8 2020

a) Đặt \(x=1+m\)và \(y=1-m\)khi đó \(x+y=2\)

Ta có: \(C=x^2+y^2+7=\left(1+m\right)^2+\left(1-m\right)^2+7\)

\(=1+2m+m^2+1-2m+m^2+7=2m^2+9\)

Vì \(m^2\ge0\forall x\)\(\Rightarrow2m^2\ge0\forall m\)\(\Rightarrow2m^2+9\ge9\forall m\)

Dấu " = " xảy ra \(\Leftrightarrow m=0\)\(\Rightarrow x=y=1\)

Vậy \(minC=9\)\(\Leftrightarrow x=y=1\)

19 tháng 5 2017

câu A thiếu đề

B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)

Min B=2016 khi x-1=0<=>x=1

+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)

=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1

19 tháng 5 2017

Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)

10 tháng 1 2017

a)Min=-3 khi x=2 và y=-3

b)Min=7/2 khi x=1/2 và y=-1

11 tháng 1 2017

A có thể giải rõ giúp e dc k

3 tháng 5 2017

\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)

\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)

\(\ge2.6+2+\dfrac{4}{5}.10=22\)

Vậy GTNN là P = 22 khi x = y = 5