K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

\(\frac{100}{x^2-20x+25}=\frac{100}{\left(x^2-20x+100\right)-75}=\frac{100}{\left(x-10\right)^2-75}\le\frac{100}{-75}=-\frac{4}{3}\)

22 tháng 9 2018

(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)

 20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1

 10x2−19x−33=010x2−19x−33=0

 (10x+11)(x−3)=0

chỉ bt lm con b thoy

..army,,,,,,,,,,

22 tháng 9 2018

a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)

\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\frac{22}{5}\)

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)

\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)

\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)

\(\Leftrightarrow20x^2-16x-33=10x^2\)

\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)

\(\Leftrightarrow20x^2-16x-33=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)

9 tháng 1 2016

13 + 23 + 3+ ... + 1003 

= (1 + 2 + 3 + ... + 100) x (12 + 22 + 3+.....+ 1002)

\(\Rightarrow\) ( 1 + 2 + 3 + ... + 100 ) x ( 12 + 22 + 32 + ... + 1002)  chia hết cho 1 + 2 + 3 + ... +100

Vậy 13 + 23 + 33 + ... + 100 sẽ chia hết cho 1 + 2 + 3 + .... + 100

Em chỉ mới lớp 7 thôi nên có thể sẽ có sai sót nhưng em mong Le vi dai sẽ tick cho em 

9 tháng 1 2016

Ta có:  \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)

Để chứng minh  \(A\)  chia hết cho  \(B\)  , ta cần chứng minh  \(A\)  chia hết cho  \(50\)  và  \(101\)

Ta có:  \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)

\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)

\(A=101\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\)  

chia hết cho  \(101\)   \(\left(1\right)\)

Lại có:   \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)

Mỗi số hạng  trong dấu ngoặc đều chia hết cho  \(50\)  nên  \(A\)  chia hết cho \(50\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\)  suy ra \(A\)  chia hết cho  \(101\)  và  \(50\)  hay  \(A\)  chia hết cho  \(B\) 

 

 

15 tháng 1 2016

\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)

\(\Leftrightarrow\frac{6}{x^2+2}-1+\frac{12}{x^2+8}-1=1-\frac{7}{x^2+3}\)

\(\Leftrightarrow\frac{6}{x^2+2}-\frac{x^2+2}{x^2+2}+\frac{12}{x^2+8}-\frac{x^2+8}{x^2+8}=\frac{x^2+3}{x^2+3}-\frac{7}{x^2+3}\)

\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}=\frac{x^2-4}{x^2+3}\)

\(\Leftrightarrow\frac{-x^2+4}{x^2+2}+\frac{-x^2+4}{x^2+8}+\frac{-x^2+4}{x^2+3}=0\)

\(\Leftrightarrow\left(-x^2+4\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\right)=0\)

\(\Leftrightarrow-x^2+4=0\left(\text{vì : }\frac{1}{x^2+2}+\frac{1}{x^2+8}+\frac{1}{x^2+3}\ne0\right)\)

<=>(2-x)(2+x)=0

<=>x=2 hoặc x=-2

Vậy S={-2;2}

14 tháng 1 2016

\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)

\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)

\(\Leftrightarrow\frac{148-x}{25}-\frac{25}{25}+\frac{169-x}{23}-\frac{46}{23}+\frac{186-x}{21}-\frac{63}{21}+\frac{199-x}{19}-\frac{76}{19}=0\)

\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)

\(\Leftrightarrow\left(123-x\right).\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)

\(\Leftrightarrow123-x=0\left(\text{vì }\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\right)\)

<=>x=123

Vậy S={123}

12 tháng 8 2018

http://123link.pro/YqpQdeng