Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)
b) Ta có \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)
\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)
Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
\(a.A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
Để : \(A=\dfrac{2}{7}\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{7}\)
\(\Leftrightarrow x+\sqrt{x}-6=0\)
\(\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\)
\(\Leftrightarrow x=4\left(TM\right)\)
\(b.A^2=\left(\dfrac{2}{x+\sqrt{x}+1}\right)^2=\dfrac{4}{\left(x+\sqrt{x}+1\right)^2}\left(1\right)\)
\(2A=2.\dfrac{2}{x+\sqrt{x}+1}=\dfrac{4}{x+\sqrt{x}+1}\left(2\right)\)
Mà : \(x+\sqrt{x}+1\le\left(x+\sqrt{x}+1\right)^2\left(3\right)\)
Từ \(\left(1;2;3\right)\Rightarrow2A\ge A^2\)
\(P=-2\left[\left(1-x\right)-\sqrt{1-x}+\frac{1}{4}\right]+2+\frac{1}{2}=-2\left(\sqrt{1-x}-\frac{1}{2}\right)^2+\frac{5}{2}\le\frac{5}{2}\)
Max P = 5/2 khi 1-x =1/4 =>x =3/4
1 )Ta có :
\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\)
\(\Rightarrow6\left(\sqrt{x}-2\right)>3\sqrt{x}\)
\(\Rightarrow6\sqrt{x}-3\sqrt{x}-2>0\)
\(\Rightarrow3\sqrt{x}>2\)
\(\Rightarrow\sqrt{x}>\dfrac{2}{3}\)
\(\Rightarrow x>\dfrac{4}{9}\)
2)
Giả sử
\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}>\dfrac{1}{3}\)
=> \(3\sqrt{x}>x+\sqrt{x}+1\)
\(\Rightarrow x+\sqrt{x}+1-3\sqrt{x}< 0\)
\(\Rightarrow\left(x-2\sqrt{x}+1\right)< 0\Leftrightarrow\left(\sqrt{x-1}\right)^2< 0\) ( vô lí )
Bất đẳng thức trên là sai, mà các phép biến dổi là tương đương
\(\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)
\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)
\(P=-2\left[\left(1-x\right)-2.\frac{\sqrt{1-x}}{4}+\frac{1}{16}\right]+2+\frac{1}{8}=-2\left(\sqrt{1-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
Max P=17/8 khi 1-x =1/16 hay x = 15/16
\(P=-2\left[\left(1-x\right)-\frac{2\sqrt{1-x}}{4}+\frac{1}{16}\right]+\frac{1}{8}=-2\left(\sqrt{1-x}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)
Max P = 1/8 khi 1- x =1/16 => x =1-1/16 =15/16
Để giá trị căn được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)
Đề có sai gì không bạn