Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trong TH này ta thêm điều kiện $x$ là số nguyên dương.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x(x+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{(x+1)-x}{x(x+1)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x}{x+1}\)
Vậy \(\frac{x}{x+1}=\frac{\sqrt{2017-x}+2016}{\sqrt{2016-x}+2017}\)
\(\Rightarrow x\sqrt{2016-x}+2017x=(x+1)\sqrt{2017-x}+2016(x+1)\)
\(\Leftrightarrow x\sqrt{2016-x}=(x+1)\sqrt{2017-x}+2016-x\)
\(\Leftrightarrow x(\sqrt{2017-x}-\sqrt{2016-x})+\sqrt{2017-x}+2016-x=0\)
\(\Leftrightarrow \frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}+\sqrt{2017-x}+(2016-x)=0\)
Hiển nhiên ta thấy:
\(\frac{x}{\sqrt{2017-x}+\sqrt{2016-x}}>0\)
\(\sqrt{2017-x}\geq 0\)
\(2016-x\geq 0\)
Do đó pt trên vô nghiệm
Tức là không tìm đc $x$ thỏa mãn.
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)
Ta có:
\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{\left(x-2017\right)\left(y-2017\right)}}\)
\(P^2\)=\(\dfrac{x+y}{x+y-4034+2\sqrt{xy-2017\left(x+y\right)+2017^2}}\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2017}\)
Suy ra xy=2017(x+y)
Suy ra \(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017\left(x+y\right)-2017\left(x+y\right)+2017^2}}\)
\(P^2=\dfrac{x+y}{x+y-4034+2\sqrt{2017^2}}\)
\(P^2=\dfrac{x+y}{x+y-4034+4034}=\dfrac{x+y}{x+y}=1\)
Vậy P=1
Dark Bang SilentNam NguyễnNguyễn Huy Túlê thị hương giangMashiro ShiinaNgô Tấn ĐạtNguyễn Thanh HằngHà Nam Phan Đình
********************************************************
1) ĐK \(x\ge0\)
Ta có: \(\dfrac{2\sqrt{x}}{x+1}=\dfrac{-x+2\sqrt{x}-1+x+1}{x+1}=\dfrac{-\left(\sqrt{x}-1\right)^2}{x+1}+1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}\le1\) (Vì \(\dfrac{-\left(\sqrt{x}-1\right)^2}{x+1}\le0\))
Vậy GTLN của biểu thức này là 1 <=> x=1
2) ĐK \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+4-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\le2\) (Vì \(-\dfrac{\sqrt{x}}{\sqrt{x}+2}\le0\))
Vậy GTLN của biểu thức này là 2 <=> x=0
\(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\cdot\dfrac{x-1}{x+\sqrt{x}+1}\)
\(=\dfrac{x-1}{\left(x+\sqrt{x}+1\right)^2}\)
Mình làm mấy bài rút gọn thôi nhé :v (mấy cái kia mình làm sợ không đúng)
\(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1-\left(x+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+1-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+0-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left[-\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(-1\right)}{x+\sqrt{x}+1}\\ =-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
Bài 3:
\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{\left(2x+\sqrt{x}\right)\sqrt{x}}{x}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+2\left(\sqrt{x}+1\right)\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x\left(2\sqrt{x}+1\right)}{x}+2\sqrt{x}+2\)
\(=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\\ =\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}+1\\ =\dfrac{x-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\\ =\dfrac{2x+1}{x+\sqrt{x}+1}\)
ta có:
\(P=\dfrac{\sqrt{\left(x-2016\right).2017}}{\sqrt{2017}\left(x+1\right)}+\dfrac{\sqrt{\left(x-2017\right)2016}}{\sqrt{2016}\left(x-1\right)}\)
Áp dụng BĐT cauchy:\(\sqrt{\left(x-2016\right)2017}\le\dfrac{1}{2}\left(x-2016+2017\right)=\dfrac{1}{2}\left(x+1\right)\)
\(\sqrt{\left(x-2017\right)2016}\le\dfrac{1}{2}\left(x-2017+2016\right)=\dfrac{1}{2}\left(x-1\right)\)
do đó \(P\le\dfrac{x+1}{2\sqrt{2017}\left(x+1\right)}+\dfrac{x-1}{2\sqrt{2016}\left(x-1\right)}=\dfrac{1}{2\sqrt{2017}}+\dfrac{1}{2\sqrt{2016}}\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2016=2017\\x-2017=2016\end{matrix}\right.\)\(\Rightarrow x=4033\)