Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)
\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)
\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)
\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)
\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)
1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3
= 1-x/x + (2-2(1-x))/1-x + 3
= 1-x/x + 2x/1-x + 3 >= 2√2 + 3
Dấu "=" xảy ra khi x =√2 - 1
2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)
=> P = √z-1 / z + √x-2 / x + √y-3 / y
= a/a^2+1 + b/b^2+2 + c/c^2+3
a^2+1 >= 2a => a/a^2+1 <= 1/2
b^2+2 >= 2√2 b => b/b^2+2 <= 1/2√2
c^2+3 >= 2√3 c => c/c^2+3 <= 1/2√3
=> P <= 1/2 + 1/2√2 + 1/2√3
Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3
<=> z-1 = 1, x-2 = 2, y-3 = 3
<=> x=4, y=6, z=2
\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)
Biểu thức này không tồn tại max mà chỉ tồn tại min
\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)
Ta có:
P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)
P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)
=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)
Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)
Ta có :
P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)
Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)
<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)
=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)
\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)
Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...
Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)
<=> x=-y=\(\dfrac{1}{\sqrt{3}}\)
\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)
Mà ta có:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)
\(\Leftrightarrow2x^2-7x+5\le0\)
\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)
Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)
Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)