Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 câu tương tự nhau nên t làm 1 câu thôi
\(\left(4x-3\right).\left(4x+3\right)-\left(2x-3\right)^2=-18\)
\(\Leftrightarrow16x^2-9-4x^2+12x-9+18=0\)
\(\Leftrightarrow12x^2+12x=0\)
\(\Leftrightarrow12x.\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}12x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy...
\(\Leftrightarrow4\left(x^2+x-2\right)-\left(4x^2+11x-3\right)=2x-2\)
\(\Leftrightarrow4x^2+4x-8-4x^2-11x+3=2x-2\)
=>-7x-5=2x-2
=>-9x=3
hay x=-1/3
Là khai triển đa thức hay tính hả em? Muốn tính thì phải có điều kiện của $x$ chứ?
\(2x-1\left(x+2\right)-3\left(x+2\right)=0\)
\(\Rightarrow\left(2x-4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
(2x-1)(x+2)-3(x+2)=0
<=>2x2+3x-2-3x-6=0
<=>2x2-8=0
<=>2(x2-4)=0
<=>x2-4=0
<=>(x+2)(x-2)=0
=>\(\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
Vậy...
8x3+36x2+54x+27
tại x =-4
=>8×(-4)3+36×(-4)2+54×(-4)+27
=8×(-64)+36×16+54×(-4)+27
=-512+576-216+27
=-125
(4x-3)(16x2+12x+9)-x2(64x-4)
=4x(16x2+12x+9)- 3(16x2+12x+9)-x2(64x-4)
=(64x3+48x2+36x)-(48x2+36x+27)-(64x3-4x2)
=64x3+48x2+36x-48x2-36x-27-64x3+4x2
=(64x3-64x3)+(48x2-48x2+4x2)+(36x-36x)-27
=4x2-27
tại x=-1/4
=> 4×(-1/4)2-27
=4×1/16-27
=1/4-27
=-107/4
(ko bt cs đúng ko nx )
\(M=x^2-2xy+4y^2+12xy+22\)
\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)
\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\)
( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt )
\(B=-x^2+4x-\frac{1}{2}\)
\(\Leftrightarrow B=-\left(x^2-4x+\frac{1}{2}\right)\)
\(\Leftrightarrow B=-\left(x^2-4x+4-4+\frac{1}{2}\right)\)
\(\Leftrightarrow B=-\left(x-2\right)^2+\frac{7}{2}\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-2\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
\(\Rightarrow Max_B=\frac{7}{2}\) khi x=2
\(B=-x^2+4x-\frac{1}{2}=-\left(x^2-4x+4\right)+\frac{7}{2}\)\(=-\left(x-2\right)^2+\frac{7}{2}\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow B\le\frac{7}{2}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=2\)
Vậy \(Max_B=\frac{7}{2}\Leftrightarrow x=2\)
a.\(\left(3x-1\right)\left(9x^2+3x+1\right)+\left(1-3x\right)^3-3x\left(9x-3\right)-\left(x+2\right)^3+x\left(x^2+6x+12\right)\)\(=27x^3-1+1^3-9x+27x^2-27x^3-27x^2+9x-x^3-6x^2-12x-8+x^3+6x^2+12x\)\(=\left(27x^3+1^3-27x^3-x^3+x^3\right)+\left(27x^2-27x^2-6x^2+6x^2\right)+\left(-9x+9x-12x+12x\right)+\left(-1-8\right)\)\(=1-9=8\)
b.
\(\left(2x-3\right)\left(x-2\right)\left(x+2\right)-2\left(x+3\right)^3-\left(x-4\right)^3+\left(x-3\right)\left(x^2+3x+9\right)+9x^2+110x\)\(=\left(2x-3\right)\left(x^2-4\right)-2\left(x^3+9x^2+27x\right)-\left(x^3-12x^2+48x-64\right)+x^3-27+9x^2+110x\)\(=2x^3-8x-3x^2+1-2x^3-18x^2-54x-x^3+12x^2-48x+64+x^3-27+9x^2+110x\)\(=\left(2x^3-2x^3-x^3+x^3\right)+\left(-3x^2-18x^2+2x^2+9x^2\right)+\left(-8x-54x-48x+110x\right)+\left(1+64-27\right)\)\(=38\)
Sai òi