Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến
\(A=\sum\dfrac{x}{\sqrt{x^2+1}+x}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}+x}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\sum\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}=\sum\dfrac{\sqrt{x}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}=1\)
tại sao: \(\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\)≤ \(\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)
Cộng theo từng vế
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)
Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số :
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)
=> \(x+y+z\ge1\)
Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = y = z =1/3
Vậy min A = 1/2 <=> x = y = z = 1/3
\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)
Nên phần còn lại vô nghiệm
Bài 1)
Ta biết ĐKXĐ:
\(\left\{\begin{matrix}4-x^2\ge0\\x^4-16\ge0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}4-x^2\ge0\\\left(x^2-4\right)\left(x^2+4\right)\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4-x^2\ge0\\x^2-4\ge0\end{matrix}\right.\Rightarrow x^2-4=0\rightarrow x=\pm2\)
Mặt khác \(4x+1\geq 0\Rightarrow x=2\)
Thay vào PT ban đầu : \(\Rightarrow 3+|y-1|=-y+5\Leftrightarrow |y-1|=2-y\)
Xét TH \(y-1\geq 0\) và \(y-1<0\) ta thu được \(y=\frac{3}{2}\)
Thu được cặp nghiệm \((x,y)=\left (2,\frac{3}{2}\right)\)
Bài 2)
BĐT cần chứng minh tương đương với:
\(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\leq 1\Leftrightarrow A=\left(\sqrt{\frac{z(x-z)}{xy}}+\sqrt{\frac{z(y-z)}{xy}}\right)^2\leq 1\)
Áp dụng BĐT Cauchy - Schwarz kết hợp AM-GM:
\(A\leq \left ( \frac{z}{y}+\frac{z}{x} \right )\left ( \frac{x-z}{x}+\frac{y-z}{y} \right )=\left ( \frac{z}{x}+\frac{z}{y} \right )\left ( 2-\frac{z}{x}-\frac{z}{y} \right )\)
\(\leq \left ( \frac{\frac{z}{x}+\frac{z}{y}+2-\frac{z}{x}-\frac{z}{y}}{2} \right )^2=1\)
Do đó ta có đpcm.
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
Max E=10