\(3x-x^2\)

b)  \(\sqrt{x}-x\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

\(A,ĐKXĐ:x;y\ge0\)

\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)

\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)

\(ĐKXĐ:x;y\ge0\)

\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)

\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)

a: \(=\sqrt{10}\left(\sqrt{5}-1\right)+\sqrt{15}\left(\sqrt{5}-1\right)\)

\(=\sqrt{5}\left(\sqrt{5}-1\right)\left(\sqrt{2}+\sqrt{3}\right)\)

b: \(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)

c: \(=\sqrt{\left(x-y\right)\left(x+y\right)}+\sqrt{\left(x+y\right)^2}\)

\(=\sqrt{x+y}\cdot\left(\sqrt{x-y}+\sqrt{x+y}\right)\)

d: \(=\left(\sqrt{x-2}+1\right)^2\)

g: \(=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

19 tháng 8 2017

a,Ta có :\(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)

\(\Rightarrow x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3\sqrt[3]{4\left(\sqrt{5}-1\right).4\left(\sqrt{5}+1\right)}.\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)\(\Rightarrow x^3=8-3\sqrt[3]{16\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}.x\)

\(\Rightarrow x^3=8-3\sqrt[3]{64}.x\Rightarrow x^3=8-12x\)\(\Rightarrow x^3-12x+8=0\)

Vậy \(x^3+12x-8=0\)

19 tháng 8 2017

b,\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)(1)

Ta có :\(3=\left(x^2+3\right)-x^2=\left(\sqrt{x^2+3}-x\right)\left(\sqrt{x^2+3}+x\right)\)(2)

\(3=\left(y^2+3\right)-y^2=\left(\sqrt{y^2+3}-y\right)\left(\sqrt{y^2+3}+y\right)\) (3)

Từ (1) và (2) ta suy ra :\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

Từ (1) và (3) ta suy ra :\(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)

Cộng 2 đẳng thức trên vế theo vế ta được :

\(x+y+\sqrt{x^2+3}+\sqrt{y^2+3}=\sqrt{x^2+3}+\sqrt{y^2+3}-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy B=0