Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(84x+63-90x+30=175x+140+315\)
93-6x=175x+455
-362=181x
x=-2
b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
bài 1 dễ òy tự lm mà nâng cao kiến thức ;))
Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự
Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)
\(\Leftrightarrow Ax^2+200Ax+10000A=x\)
\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)
\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)
Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)
\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)
\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)
Dấu "=" xảy ra \(\Leftrightarrow x=100\)
Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)
Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((
a) \(\left(3-2x\right)\left(x+1\right)+x\left(2x-1\right)=3x+3-2x^2-2x+2x^2-x=3\)
b) \(\frac{x^2+9}{x^2+3x}+\frac{6}{x+3}=\frac{x^2+9}{x\left(x+3\right)}+\frac{6x}{x\left(x+3\right)}=\frac{x^2+6x+9}{x\left(x+3\right)}=\frac{\left(x+3\right)^2}{x\left(x+3\right)}=\frac{x+3}{x}\)
c)\(\frac{2+x}{2-x}+\frac{4x^2}{4-x^2}+\frac{x-2}{2+x}=\frac{\left(x+2\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}+\frac{-\left(x-2\right)^2}{\left(2+x\right)\left(2-x\right)}\)
\(=\frac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}=\frac{4x^2+8x}{\left(x+2\right)\left(2-x\right)}=\frac{4x\left(x+2\right)}{\left(x+2\right)\left(2-x\right)}=\frac{4x}{2-x}\)
d) \(\left(x^3+4x^2+6x+4\right):\left(x+2\right)\)
\(=\left(x^3+2x^2+2x^2+4x+2x+4\right):\left(x+2\right)\)
\(=\left[x^2\left(x+2\right)+2x\left(x+2\right)+2\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x^2+2x+2\right)\left(x+2\right):\left(x+2\right)=x^2+2x+2\)
a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0
=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0
=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0
=> -24x + 7 = 0
=> - 24x = -7
=> x = 7/24
b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5
=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5
=> 6x - 5 = -5
=> 6x = 0
=> x = 0
c, x^2 = -6x - 8
=> x^2 + 6x + 8 = 0
=> x^2 + 2.x.3 + 9 - 1 = 0
=> (x + 3)^2 = 1
=> x + 3 = 1 hoặc x + 3 = -1
=> x = -2 hoặc x = -4
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)