Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8
\(6M=-6x^2+12xy-24y^2+12x+60y-48\)
\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)
\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)
\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)
Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2
Chúc bạn học tốt :>
\(A=-\left(x^2-2x\left(y+1\right)+\left(y+1\right)^2\right)-\left(4y^2-10y-5-\left(y+1\right)^2\right)\)
\(=-\left(x-y-1\right)^2-\left(3y^2-12y-6\right)\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+18\le18\)
Max A=18 khi y=2; x=3
\(M=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+y^2\right)-\left(3y^2-12y+12\right)+\left(2x-2y\right)+4\)
\(=-\left(x-y\right)^2-3\left(y^2-4y+4\right)+2\left(x-y\right)+4\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-3\left(y-2\right)^2+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)
Vì \(\hept{\begin{cases}-\left(x-y-1\right)^2\le0\\-3\left(y-2\right)^2\le0\end{cases}\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2\le0}\)
\(\Rightarrow M=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy Mmax = 5 khi x = 3, y = 2
Đặt A = -x2 + 2xy - 4y2 + 2x + 10y - 8
= -[(x2 - 2xy + y2) - 2(x - y) + 1] - (3y2 - 12y + 12) + 5
= -[(x - y - 1)2 + 3(y - 2)2] + 5\(\le\)5
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy Max A = 5 <=> x = 3 ; y = 2
-x2 + 2xy - 4y2 + 2x + 10y - 8
= -( x2 - 2xy + y2 - 2x + 2y + 1 ) - ( 3y2 - 12y + 12 ) + 5
= -[ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] - 3( y2 - 4y + 4 ) + 5
= -[ ( x - y )2 - 2( x - y ) + 12 ] - 3( y - 2 )2 + 5
= -( x - y - 1 )2 - 3( y - 2 )2 + 5
Ta có : \(\hept{\begin{cases}-\left(x-y-1\right)^2\\-3\left(y-2\right)^2\end{cases}}\le0\forall x,y\Rightarrow-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của biểu thức = 5 <=> x = 3 ; y = 2