\(M=-2x^2+3x+1\)

b) \(N=-x^2+2xy-4y^2+2x+10y+5\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}\right)\)

\(=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\forall x\)

Dấu '=' xảy ra khi x=3/4

b: Tham khảo:

undefined

12 tháng 1 2017

Đặt A=\(-x^2+2x\left(y+1\right)-\left(y-1\right)^2-3y^2+8y+6\)

=\(-\left(x-y+1\right)^2-3\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{34}{3}\)

=\(-\left(x-y+1\right)^2-3\left(y-\frac{4}{3}\right)^2+\frac{34}{3}\le\frac{34}{3}\)

12 tháng 1 2017

dấu = xảy ra khi \(\left\{\begin{matrix}x-y+1=0\\y-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=\frac{1}{3}\\y=\frac{4}{3}\end{matrix}\right.\)

Vậy max A=\(\frac{34}{3}\)khi và chỉ khi x=1/3, y=4/3

17 tháng 6 2017

bạn xem trong danh sách câu trả lời của mình ấy, mình đã trả lời nhiều bài tương tự rồi

15 tháng 3 2017

1) a) Đặt biểu thức là A

\(A=2x^2+4y^2-4xy-4x-4y+2017\)

\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)

\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)

Vậy: MinA=2008 khi x=-3; y=-2

15 tháng 3 2017

3) a) \(A=\dfrac{1}{x^2+x+1}\)

\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)

Vậy MinA\(\dfrac{4}{3}\) khi x=-0,5

22 tháng 11 2016

a)\(M=x^2-2xy+2y^2-4y+2016\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)

Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)

Vậy MinM=2012 khi x=y=2

b)\(N=x^2-2xy+2x+2y^2-4y+2016\)

\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)

Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)

Vậy MinN=2014 khi x=0;y=1

 

 

Câu 3: 

\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}< =\dfrac{13}{12}\)

Dấu '=' xảy ra khi x=1/6

Bài 4: 

\(C=\left(x+y\right)^2-4\left(x+y\right)+1\)

=3^2-4*3+1

=9+1-12

=-2

21 tháng 6 2018

\(C=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)

     \(=-\left[\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+\left(3y^2-9y+3\right)+4\right]\)

       \(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-1\right)^2+4\right]\)

      \(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2+4\right]\)

      \(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2\right]-4\le-4\)

          GTLN là -4    tại x=2;y=1