Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) min B=50 (vì |y-3|>=0) khi |y-3|=0=> y=3
b) tương tự min C=-1 khi x=100 và y=-200
bài 1 :
a) x - {x-[(-x-1)]} = 1
=> x -{x -[2x-1]} =1
=> x - {x-2x+1} =1
=> x - ( -1+1)=1
=> x+x-1 = 1
=> 2x = 2
=> x =1
vậy x = 1
b) ( x+5).(x-2)<0
=> x+5 và x-2 là 2 thừa số trái dấu
mà x-2 < x+5
=> x-2 âm => x<2
x+5 dương=> x > -5
=> -5 < x<2
vậy ....
Bài 2 :
( x+1).(xy-1) = 3
vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z
=> x + 1 avf xy -1 là các ước nguyên của 3
từ đó tìm được các giá trị
+ nếu x = -2 => y=1
+ nếu x = 2 => y =1
+ nếu x = -4 => y =0
b) 3x+4y-xy =15
x.(3-y)+4y = 15 x.(3-y)=15-4y
x.(3-y)=12-4y+3
x.(3-y) = 4.(3-y)+3
x.(3-y)-4.(3-y)=3
vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z
=> 3-y và x-4 là các ước nguyễn của 3
=>.....
ta tìm được các giá trị của x và y
Bài 3:
nếu x = 0 thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại
=> x lớn hơn hoặc = 1
=> 26^x chẵn
mà 25^y lẻ với mọi y thuộc N
=> 24^7 lẻ => z =0
ta có 26^x = 25^y + 1
với x = y+ 1 thì 26 = 25 +1 , đúng
với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76
=> 26^x chia hết cho 4
25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1
=> 25 ^y + 1 chia 4 dư 2
=> 26^x khác 25^y + 1 , loại
Bài 4:
ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012
đó là 2 lần x => x= 1006
rùi thay
ta có đ/s :
z =1007
y = -1005
Bài 5 :
do 20/39 là phân số tối giản
có UWCLN ( 20,39 ) =1
mà phân số cần tìm UWCLN của tử và mẫu là 36
=> phân số cần tìm là :
20.36/39.36
= 720.1404
Đ/S: 720/1404
Bài 6 :
vì UWClN ( a,b) = 12 => a =12 m, b =12n
( m,n ) =1
BCNN ( a,b ) =12 .m.n =180
=> m.n = 15
do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b
=> m lớn hơn hoặc bằng n
mà ( m,n ) =1 => m =15, n= 1
hoặc m =5, n =3
vậy vs a =180=> b=12
vs a = 60 => b =36
\(\left(x-1\right)\left(y-5\right)=7\)
\(\left(x-1\right)\left(y-5\right)=7=1.7=7.1=-1.\left(-7\right)=-7.\left(-1\right)\)
x-1 | 1 | 7 | -1 | -7 |
y-5 | 7 | 1 | -7 | -1 |
x | 2 | 8 | 0 | -6 |
y | 12 | 6 | -2 | 4 |
vậy ...
mấy cái khác tương tự nha
\(\left(x+3\right)\left(xy+2\right)=3\)
\(\left(x+3\right)\left(xy+2\right)=3=1.3=3.1=-1.\left(-3\right)=-3.\left(-1\right)\)
\(th1\orbr{\begin{cases}x+3=1\\xy+2=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\-2y+2=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\-2y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}}\)
\(th2\orbr{\begin{cases}x+3=3\\xy+2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\0y+2=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\0y=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=0:1\left(ktm\right)\end{cases}}}\)
\(th3\orbr{\begin{cases}x+3=-1\\xy+2=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\-4y+2=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\-4y=-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\y=-\frac{5}{4}\end{cases}}}\)
\(th4\orbr{\begin{cases}x+3=-3\\xy+2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\-6y+2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\-6y=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=-\frac{1}{2}\end{cases}}}\)
vậy .......
a) TH1: 2x+1 = 4 => 2x = 4-1 = 3 => x= 3:2 = 1,5
TH2: y+2 = 4 => y= 4-2 = 2
duyệt đi
a) TH1: 2x+1 = 4 => 2x = 4-1 = 3 => x= 3:2 = 1,5
TH2: y+2 = 4 => y= 4-2 = 2
duyệt đi
a, Vì |x+1 và |y-2| đều >= 0 nên A >= 0+0+(-39) = -39
Dấu "=" xảy ra <=> x+1=0 và y-2=0 <=> x=-1 và y=2
Vậy ........
b, Vì |xy-4| và |x+2| đều >= 0 nên B < = -1005-0-0 = -1005
Dấu "=" xảy ra <=> xy-4=0 và x+2=0 <=> x=y=-2
Vậy ..........
k mk nha