Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Rút gọn:
\(M=\frac{x^2}{\left(x+y\right).\left(1-y\right)}-\frac{y^2}{\left(x+y\right).\left(x+1\right)}-\frac{x^2y^2}{\left(1+x\right).\left(1-y\right)}\)
\(M=\frac{x^2}{\left(x+y\right).\left(1-y\right)}-\frac{y^2}{\left(x+y\right).\left(x+1\right)}-\frac{x^2y^2}{\left(x+1\right).\left(1-y\right)}\)
\(M=\frac{x^2.\left(x+1\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}-\frac{y^2.\left(1-y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}-\frac{x^2y^2.\left(x+y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}\)
\(M=\frac{x^2.\left(x+1\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}+\frac{-y^2.\left(1-y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}+\frac{-x^2y^2.\left(x+y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}\)
\(M=\frac{x^2.\left(x+1\right)-y^2.\left(1-y\right)-x^2y^2.\left(x+y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}\)
\(M=x^2-y^2-x^2y^2.\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\left(ĐKXĐ:x\ne-1;y\ne1\right)\)
\(M=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+x^3+y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x+y\right)\left(x-y-x^2y^2+x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-y-x^2y^2+x^2-xy+y^2}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-xy+x^2-x^2y^2+y^2-y}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(1-y\right)+x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(1-y\right)\left(x+x^2\left(1+y\right)-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(x+1\right)+y\left(x-1\right)\left(x+1\right)}{1+x}\)
\(M=x+xy-y\)
b)Ta có:\(x+xy-y=-7\)
\(x\left(y+1\right)-y-1+8=0\)
\(\left(x-1\right)\left(y+1\right)=-8\)
Ta có : -8 = 8 . -1 = -8 . 1 = -2.4=-4.2
Rồi chỗ đó tự thay nha
Đây là bài dài nhất trong olm của mk
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề thiếu x nguyên nhé bạn :)
\(x^2+10x+10=\left(x^2+10x+25\right)-15\)
Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)
Khi đó:\(\left(x+5\right)^2-a^2=15\)
\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)
Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !
sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ
Bài làm
\(\frac{1}{\left(y-1\right)^2\left(y-2\right)}=\frac{m}{y-1}+\frac{n}{\left(y-1\right)^2}+\frac{p}{y-2}\)
ĐKXĐ : \(\hept{\begin{cases}y\ne1\\y\ne2\end{cases}}\)
MTC của VP : ( y - 1 )2( y - 2 )
<=> \(\frac{1}{\left(y-1\right)^2\left(y-2\right)}=\frac{m\left(y-1\right)\left(y-2\right)}{\left(y-1\right)^2\left(y-2\right)}+\frac{n\left(y-2\right)}{\left(y-1\right)^2\left(y-2\right)}+\frac{p\left(y-1\right)^2}{\left(y-1\right)^2\left(y-2\right)}\)
<=> \(\frac{1}{\left(y-1\right)^2\left(y-2\right)}=\frac{m\left(y^2-3y+2\right)}{\left(y-1\right)^2\left(y-2\right)}+\frac{ny-2n}{\left(y-1\right)^2\left(y-2\right)}+\frac{p\left(y^2-2y+1\right)}{\left(y-1\right)^2\left(y-2\right)}\)
<=> \(\frac{1}{\left(y-1\right)^2\left(y-2\right)}=\frac{my^2-3my+2m}{\left(y-1\right)^2\left(y-2\right)}+\frac{ny-2n}{\left(y-1\right)^2\left(y-2\right)}+\frac{py^2-2py+p}{\left(y-1\right)^2\left(y-2\right)}\)
<=> \(\frac{1}{\left(y-1\right)^2\left(y-2\right)}=\frac{my^2-3my+2m+ny-2n+py^2-2py+p}{\left(y-1\right)^2\left(y-2\right)}\)
<=> \(\frac{1}{\left(y-1\right)^2\left(y-2\right)}=\frac{\left(m+p\right)y^2+\left(-3m+n-2p\right)y+\left(2n-2n+p\right)}{\left(y-1\right)^2\left(y-2\right)}\)
Khử mẫu
<=> \(\left(m+p\right)y^2+\left(-3m+n-2p\right)y+\left(2m-2n+p\right)=1\)
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}m+p=0\\-3m+n-2p=0\\2m-2n+p=1\end{cases}}\Rightarrow\hept{\begin{cases}m=n=-1\\p=1\end{cases}}\)< mình dùng máy 580VN X để giải hệ này >
Vậy m = n = -1 ; p = 1