K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

2)

a)Ta có: 2m+5=n.(m-1)

=> 2m+5=nm-n

=>2m+5-nm+n=0

=>(2-n).m+5+n=0

=>(2-n).m-(2-n)+5+2=0

=>(2-n).(m-1)+7=0

=>(2-n).(m-1)=-7=-1.7=-7.1

Ta có bảng sau:

2-n

1

-7

-1

7

n

1

9

3

-5

m-1

-7

1

7

-1

m

-6

2

8

0

Vậy (n,m)=(1,-6),(9,2),(3,8),(-5,0)

1 tháng 4 2022

3/4 +3 =

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

17 tháng 9 2019

A)\(M=1+3+3^2+...+3^9\)\(\Rightarrow3M=3+3^2+3^3+...+3^{10}\)\(\Rightarrow3M-M=\left(3+3^2+3^3+...+3^{10}\right)-\left(1+3+3^2+...+3^9\right)\)

\(\Rightarrow2M=3^{10}-1\)\(\Rightarrow2M+1=3^{10}\)\(\Rightarrow n=10\)

B) \(A=1+4^2+...+4^{99}\)\(\Rightarrow4A=4+4^3+4^4+...+4^{100}\)\(\Rightarrow4A-A=\left(4+4^3+4^4+...+4^{100}\right)-\left(1+4^2+...+4^{99}\right)\)

\(\Rightarrow3A=4^{100}+4-4^2-1\Rightarrow3A=4^{100}-13\Rightarrow3A+13=4^{100}\Rightarrow n=100\)

Câu 1: 

\(\dfrac{128}{\left(n-3\right)^3}=2\)

\(\Leftrightarrow\left(n-3\right)^3=64\)

=>n-3=4

hay n=7

Câu 2: 

\(\Leftrightarrow x^3+12=57\cdot4=228\)

\(\Leftrightarrow x^3=216\)

hay x=6