Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y'=3x2-2(m+2)x+1-m.
\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).
|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).
\(y'=3x^2-3m^2=0\Rightarrow x=\pm m\)
\(\Rightarrow\) Tung độ của 2 cực trị: \(\left\{{}\begin{matrix}y_A=m^3-3m^3+m=-2m^3+m\\y_B=-m^3+3m^3+m=2m^3+m\end{matrix}\right.\)
\(\Rightarrow\frac{y_A+y_B}{2}=1\Leftrightarrow m=1\)
Lời giải:
Viết lại hàm số: \(y=\frac{1}{3}mx^3-(m-1)x^2+3(m-2)x+\frac{1}{3}\)
Ta có \(y'=mx^2-2(m-1)x+3(m-2)\)
a) Trước tiên, để hàm số đạt cực trị tại $x=0$ thì $x=0$ phải là nghiệm của pt \(y'=0\Leftrightarrow 3(m-2)=0\Leftrightarrow m=2\)
Thử lại: \(y'=2x^2-2x\)
\(y'=0\Leftrightarrow x=0\) hoặc \(x=1\). Lập bảng biến thiên ta thấy đúng là $y$ cực đại tại $x=0$
Vậy $m=2$
b) Tương tự như phần a, để hàm số đạt cực trị tại $x=-1$ thì $x=-1$ phải là nghiệm của pt \(y'=0\)
\(\Leftrightarrow m(-1)^2-2(m-1)(-1)+3(m-2)=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Thử lại: \(y'=\frac{4}{3}x^2-\frac{2}{3}x-2\). Có \(y'=0\Leftrightarrow x=\frac{3}{2}\) hoặc $x=-1$. Lập bảng biến thiên ta thấy $y$ cực tiểu tại $x=\frac{3}{2}$ chứ không phải tại $x=-1$
Vậy không tồn tại $m$ thỏa mãn.
c) Hàm số có cực đại và cực tiểu khi $y'=0$ có hai nghiệm phân biệt.
Hay $mx^2-2(m-1)x+3(m-2)=0$ có hai nghiệm phân biệt
Do đó \(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-3m(m-2)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ -2m^2+4m+1>0\Leftrightarrow \frac{2-\sqrt{6}}{2}< m< \frac{2+\sqrt{6}}{2}\end{matrix}\right.\)
d) Điểm cực trị của hàm số chính là nghiệm của $y'=0$
Với ĐKXĐ như phần c, áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m-1)}{m}\\ x_1x_2=\frac{3(m-2)}{m}\end{matrix}\right.\)
Nếu \(x_1+2x_2=1\Rightarrow x_2=1-(x_1+x_2)=\frac{2-m}{m}\)
Mà \(x_1x_2=\frac{3(m-2)}{m}\Rightarrow x_1=-3\)
Khi đó: \(1=x_1+2x_2=-3+\frac{2-m}{m}=-4+\frac{2}{m}\Rightarrow m=\frac{2}{5}\)
Thử lại thấy thỏa mãn đkxđ. Vậy $m=\frac{2}{5}$
\(y'=3x^2-2\left(m+2\right)x+m-1\)
\(\Delta'=\left(m+2\right)^2-3\left(m-1\right)=m^2+m+7>0;\forall m\)
Hàm luôn có CĐ-CT
Tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt đường thẳng d' đi qua CĐ-CT có dạng:
\(y=-\frac{2m^2+2m+14}{9}x+\frac{m^2+19m-11}{9}\)
\(\Leftrightarrow\left(2m^2+2m+14\right)x+9y-\left(m^2+19m-11\right)=0\)
\(\Rightarrow\) d' nhận \(\left(2m^2+2m+14;9\right)\) là 1 vtpt
Do d có 1 vtpt là \(\left(2;1\right)\) nên:
\(cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|2\left(2m^2+2m+14\right)+9\right|}{\sqrt{\left(2m^2+2m+14\right)^2+81}.\sqrt{5}}\)
Đặt \(2m^2+2m+14=t>0\)
\(\Rightarrow\frac{\left|2t+9\right|}{\sqrt{5t^2+405}}=\frac{\sqrt{3}}{2}\Leftrightarrow4\left(2t+9\right)^2=3\left(5t^2+405\right)\)
\(\Leftrightarrow t^2+144t-891=0\)
Nghiệm xấu quá, bạn tự hoàn thành :D
Ta thấy phương trình \(f'\left(x\right)=0\) có 3 nghiệm bội lẻ là \(x=\left\{1;-2;2\right\}\) nên hàm số đã cho có 3 điểm cực trị
Nghiệm bội chẵn không là cực trị.