\(|x-m|=|2x+3m-1|\) có ngiệm duy nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2020

\(\left|x-m\right|=\left|2x+3m-1\right|\Leftrightarrow\orbr{\begin{cases}x-m=2x+3m-1\\x-m=-2x-3m+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1-4m\\3x=1-2m\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1-4m\\x=\frac{1-2m}{3}\end{cases}}}\)

pt đã cho có nghiệm duy nhất

\(\Leftrightarrow1-4m=\frac{1-2m}{3}\Leftrightarrow3-12m=1-2m\Leftrightarrow10m=2\Leftrightarrow m=\frac{1}{5}\)

2 tháng 3 2016

a)  \(\left(1\right)\)    \(\Leftrightarrow\)      \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)

Phương trình  \(\left(1\right)\) có tập nghiệm là R

             \(\Leftrightarrow\)      \(m^2-9=\left(m-1\right)\left(m-3\right)=0\)   \(\Leftrightarrow m=3\)

b) Phương trình có nghiệm duy nhất :  \(\Leftrightarrow m^2-9\ne0\)    \(\Leftrightarrow m\ne\pm3\)

Khi đó nghiệm của phương trình :  \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)

Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\)               \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)

                                                   \(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)

2 tháng 3 2016

khó

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

Bài 1:

\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)

=>-2x+3m-4+20x-25=0

=>18x+3m-29=0

Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)

=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)

=>4-48m+64<=0

=>-48m+68<=0

=>-48m<=-68

=>m>=17/12