Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1\right)\) \(\Leftrightarrow\) \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)
Phương trình \(\left(1\right)\) có tập nghiệm là R
\(\Leftrightarrow\) \(m^2-9=\left(m-1\right)\left(m-3\right)=0\) \(\Leftrightarrow m=3\)
b) Phương trình có nghiệm duy nhất : \(\Leftrightarrow m^2-9\ne0\) \(\Leftrightarrow m\ne\pm3\)
Khi đó nghiệm của phương trình : \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)
Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\) \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
Bài 1:
\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)
=>-2x+3m-4+20x-25=0
=>18x+3m-29=0
Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)
=>4-48m+64<=0
=>-48m+68<=0
=>-48m<=-68
=>m>=17/12
\(\left|x-m\right|=\left|2x+3m-1\right|\Leftrightarrow\orbr{\begin{cases}x-m=2x+3m-1\\x-m=-2x-3m+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1-4m\\3x=1-2m\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1-4m\\x=\frac{1-2m}{3}\end{cases}}}\)
pt đã cho có nghiệm duy nhất
\(\Leftrightarrow1-4m=\frac{1-2m}{3}\Leftrightarrow3-12m=1-2m\Leftrightarrow10m=2\Leftrightarrow m=\frac{1}{5}\)