\(\sqrt{x^2+4x+8}+\sqrt{x^2-6x+10}=m\) có nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 12 2020

\(VT=\sqrt{\left(x+2\right)^2+4}+\sqrt{\left(3-x\right)^2+1}\)

\(VT\ge\sqrt{\left(x+2+3-x\right)^2+\left(2+1\right)^2}=\sqrt{34}\)

Pt có nghiệm khi và chỉ khi \(m\ge\sqrt{34}\)

3 tháng 11 2018

1)Dat t=\(\sqrt{4x-x^2}\)\(\Rightarrow Pt\Leftrightarrow t^2+2t+1=m+1\ge0\Rightarrow m\ge-1\)

Theo dinh li Viet thi \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\Rightarrow-m\le0\Leftrightarrow m\ge0}\)

3 tháng 11 2018

Dat \(t=\sqrt{x^2+4x+5}\left(t\ge1\right)\)\(\Rightarrow Pt\Leftrightarrow t^2+t+m-2=0\)

DK:\(\Delta=1-4\left(m-2\right)=9-4m\ge0\Leftrightarrow m\le\dfrac{9}{4}\)

Pt co nghiem la \(t=\dfrac{-1-\sqrt{\Delta}}{2}\left(loai\right),t=\dfrac{-1+\sqrt{\Delta}}{2}\)

Vi \(t\ge1\)\(\Rightarrow\sqrt{\Delta}\ge3\Leftrightarrow9-4m\ge9\Leftrightarrow m\le0\)

\(5\ge\left|x\right|=\left|\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\right|=\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\Leftrightarrow\sqrt{9-4m}\le51\Leftrightarrow m\ge-648\)Vay \(-648\le m\le0\)

Bài 1:

\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)

=>-2x+3m-4+20x-25=0

=>18x+3m-29=0

Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)

=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)

=>4-48m+64<=0

=>-48m+68<=0

=>-48m<=-68

=>m>=17/12

24 tháng 9 2017

Đk x \(\le\dfrac{7}{4}\) và y2 \(\le6x^2\)

Vì x \(\in Z^+\) => x = 1

Thay x = 1 ta có 2\(\sqrt{3}\) + \(\sqrt{6-y^2}\) = \(\sqrt{3}y\)

<=> \(\sqrt{6-y^2}\) = \(\sqrt{3}\left(y-2\right)\) (Đk y \(\ge2\) )

<=> 6 - y2 = 3(y2 - 4y +4)

<=> 4y2 - 12y + 6 = 0

<=> 2y2 - 6y + 3 = 0

<=> y = \(\dfrac{3\pm\sqrt{3}}{2}\)

Vì y \(\ge2\) => y = \(\dfrac{3+\sqrt{3}}{2}\)

Vậy x = 1 y = \(\dfrac{3+\sqrt{3}}{2}\)

22 tháng 12 2019

\(2\sqrt{6x-5}+\sqrt{x^2-6x+14}=x^2-4x+8\\ \Leftrightarrow2\left(\sqrt{6x-5}-5\right)+\sqrt{x^2-6x+14}-3=x^2-4x-5\)

(đk x>= 5/6)

\(\Leftrightarrow\frac{2\left(6x-5-25\right)}{\sqrt{6x-5}+5}+\frac{x^2-6x+5}{\sqrt{x^2-6x+14}+3}=\left(x+1\right)\left(x-5\right)\)

\(\Leftrightarrow\frac{12\left(x-5\right)}{\sqrt{6x-5}+5}+\frac{\left(x-1\right)\left(x-5\right)}{\sqrt{x^2-6x+14}+3}-\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{12}{\sqrt{6x-5}+5}+\frac{x-1}{\sqrt{x^2-6x+14+3}}-x-1\right)=0\)

suy ra x = 5 ( dễ dàng chứng minh được cái ngoặc còn lại luôn dương với mọi x lớn hơn bằng 5/6 )

vậy x = 5 là nghiệm của phương trình

22 tháng 12 2019

mình làm còn có nghiệm = 1 nữa bạn ạ