Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)
Câu 2:
\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)
Để phương trình có hai nghiệm thì (m-2)(m+2)>=0
=>m>=2 hoặc m<=-2
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4m^2+4m-8=0\)
=>(m+2)(m-1)=0
=>m=-2(nhận) hoặc m=1(loại)
a) \(x+\sqrt{3x^2+1}=m\)
<=> \(\sqrt{3x^2+1}=m-x\)
ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)
<=> \(m\ge x\)
Lời giải:
ĐK:
$1\leq x\leq 2$
$2m+x+x^2\geq 0$
PT $Leftrightarrow -x^2+3x-2=2m+x+x^2$
$\Leftrightarrow m=-x^2+x-1$
Để PT có nghiệm thì $\min (-x^2+x-1)\leq m\leq max (-x^2+x-1)$ với $1\leq x\leq 2$
Với $1\leq x\leq 2$ dễ thấy:
$(-x^2+x-1)_{\max}=-1$ tại $x=1$
$(-x^2+x-1)_{\min}=-3$ tại $x=2$
Do đó: $-3\leq m\leq -1$
x4-2mx2+(m2-1)=0(*)
Đặt t=x2(t>=0)
PT trở thành: t2-2mt+(m2-1)=0 (1)
Để pt(*) có 3 nghiệm thì pt(1) có 1 nghiệm dương khác 0 và 1 nghiệm =0
=>m2-1=0<=>m=1 hoặc m=-1
với m=1 pt(1) có hai nghiệm t=0 hoặc t=2 (nhận)
với m=-1 pt(1) có hai nghiệm t=0 hoặc t=-2 (loại)
vậy m=1
Thế \(\hept{\begin{cases}x_1^2=2mx_1+3m\\x_2^2=2mx_2+3m\end{cases}}\) vô cái dưới là xong nha
\(pt\Leftrightarrow\left\{{}\begin{matrix}x^2-2mx+1=m^2-4m+4\\m-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2mx-m^2+4m-4=0\left(1\right)\\m\ge2\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm và \(m\ge2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=2\left(m-1\right)^2+2\ge0\\m\ge2\end{matrix}\right.\)
\(\Leftrightarrow m\ge2\)