\(\sqrt{x^2-2mx+1}=m-2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

\(pt\Leftrightarrow\left\{{}\begin{matrix}x^2-2mx+1=m^2-4m+4\\m-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2mx-m^2+4m-4=0\left(1\right)\\m\ge2\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm và \(m\ge2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=2\left(m-1\right)^2+2\ge0\\m\ge2\end{matrix}\right.\)

\(\Leftrightarrow m\ge2\)

Câu 1: 

a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)

Câu 2: 

\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)

Để phương trình có hai nghiệm thì (m-2)(m+2)>=0

=>m>=2 hoặc m<=-2

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4m^2+4m-8=0\)

=>(m+2)(m-1)=0

=>m=-2(nhận) hoặc m=1(loại)

29 tháng 7 2016

a) \(x+\sqrt{3x^2+1}=m\)

<=> \(\sqrt{3x^2+1}=m-x\)

ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)

<=> \(m\ge x\)

AH
Akai Haruma
Giáo viên
25 tháng 11 2020

Lời giải:
ĐK:

$1\leq x\leq 2$

$2m+x+x^2\geq 0$

PT $Leftrightarrow -x^2+3x-2=2m+x+x^2$

$\Leftrightarrow m=-x^2+x-1$

Để PT có nghiệm thì $\min (-x^2+x-1)\leq m\leq max (-x^2+x-1)$ với $1\leq x\leq 2$

Với $1\leq x\leq 2$ dễ thấy:

$(-x^2+x-1)_{\max}=-1$ tại $x=1$

$(-x^2+x-1)_{\min}=-3$ tại $x=2$

Do đó: $-3\leq m\leq -1$

31 tháng 5 2019

x4-2mx2+(m2-1)=0(*)

Đặt t=x2(t>=0)

PT trở thành: t2-2mt+(m2-1)=0 (1)

Để pt(*) có 3 nghiệm thì pt(1) có 1 nghiệm dương khác 0 và 1 nghiệm =0

=>m2-1=0<=>m=1 hoặc m=-1

với m=1 pt(1) có hai nghiệm t=0 hoặc t=2 (nhận)

với m=-1 pt(1) có hai nghiệm t=0 hoặc t=-2 (loại)

vậy m=1

31 tháng 5 2019

ohhhhhh tks man

24 tháng 8 2019

Thế \(\hept{\begin{cases}x_1^2=2mx_1+3m\\x_2^2=2mx_2+3m\end{cases}}\) vô cái dưới là xong nha