Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)
\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)
\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)
Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.
Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)
bài 1: pt (2) hình như có vấn đề
b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)
=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6
bài 2: ĐK: x >0 và x khác 1
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)
b) ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min
c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)
để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
x | 4(t/m) | 0(k t/m) | 9(t/m) | PTVN |
=> x thuộc (4;9)
bìa 3: câu này bạn đăng riêng mình làm rồi đó
Đề là \(\sqrt{x_1^2+1}\sqrt{x_1^2+1}\)hay là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)
làm theo đề là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)
ta có để PT \(x^2-3x+m=0\)có 2 nghiệm phân biệt
=>\(\Delta=\left(-3\right)^2-4m>0< =>9>4m< =>m< \frac{9}{4}\)
theo Vi-ét
=>\(\hept{\begin{cases}x_1+x_2=3\\x_1.x_2=m\end{cases}}\)(1)
Ta có:
\(\sqrt{x_1^2+1}\sqrt{x_2^2+1}=3\sqrt{3}< =>\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(3\sqrt{3}\right)^2=27\)
\(=>\left(x_1x_2\right)^2+x_2^2+x_1^2+1=27< =>x_1^2x_2^2+\left(x_1+x_2\right)^2-2x_1x_2=26\)
thay (1) vào :\(m^2+9-2m=26< =>m^2-2m-17=0< =>\orbr{\begin{cases}m=1+3\sqrt{2}\\m=1-3\sqrt{2}\end{cases}}\)
Mà \(m< \frac{9}{4}=>m=1-3\sqrt{2}\)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
Bài 2:
Để pt có 2 nghiệm phân biệt thì:
$\Delta=9-4m>0\Leftrightarrow m< \frac{9}{4}$
Áp dụng định lý Viet với 2 nghiệm $x_1,x_2$: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=m\end{matrix}\right.\)
Khi đó:
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{(x_1^2+1)(x_2^2+1)}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1^2+x_2^2)+1}=27\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2+2+2\sqrt{(x_1x_2)^2+(x_1+x_2)^2-2x_1x_2+1}=27\)
$\Leftrightarrow 9-2m+2+2\sqrt{m^2+9-2m+1}=27$
$\Leftrightarrow \sqrt{m^2-2m+10}=m+8$
\(\Rightarrow \left\{\begin{matrix} m\geq -8\\ m^2-2m+10=(m+8)^2=m^2+16m+64\end{matrix}\right.\)
\(\Rightarrow m=-3\) (thỏa mãn)
Vậy........
Bài 1:
Ta thấy $\Delta'=m^2-(m^2-2)=2>0$ với mọi $m$ nên PT có 2 nghiệm phân biệt với mọi $m$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2\end{matrix}\right.\)
Khi đó:
\(|x_1^3-x_2^3|=10\sqrt{2}\)
\(\Leftrightarrow |x_1-x_2||x_1^2+x_1x_2+x_2^2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}.|(x_1+x_2)^2-x_1x_2|=10\sqrt{2}\)
\(\Leftrightarrow \sqrt{4m^2-4(m^2-2)}.|4m^2-(m^2-2)|=10\sqrt{2}\)
\(\Leftrightarrow |3m^2+2|=5\Leftrightarrow 3m^2+2=5\Leftrightarrow m=\pm 1\) (thỏa mãn)
Vậy........
ĐKXĐ:\(x\ge1\)
Đặt : \(\sqrt[4]{x+1}=a;\sqrt[4]{x-1}=b\left(a,b\ge0\right)\Rightarrow\hept{\begin{cases}\sqrt{x+1}=a^2\\\sqrt{x-1}=b^2\end{cases}............}\)
Khi đó pt đã cho có dạng \(a^2-mb^2+2ab=0.\)(*)
Coi(*) là phương trình bậc 2 ẩn a.
\(\Delta'_a=b^2+mb^2\)
Pt đã cho có nghiệm khi và chỉ khi pt (*) có nghiệm
\(\Rightarrow\Delta'_a\ge0\Leftrightarrow b^2+mb^2\ge0\Leftrightarrow b^2\left(m+1\right)\ge0\Leftrightarrow m\ge-1\)
Không đơn giản thế đâu