Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\Leftrightarrow4x^2-2x+3m-4=4x^2-20x+25\)
=>-2x+3m-4+20x-25=0
=>18x+3m-29=0
Để phương trình có nghiệm thì 5-2x>=0 và \(4x^2-2x+3m-4>=0\)
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot4\cdot\left(3m-4\right)< =0\\4>0\end{matrix}\right.\Leftrightarrow4-16\left(3m-4\right)< =0\)
=>4-48m+64<=0
=>-48m+68<=0
=>-48m<=-68
=>m>=17/12
a) \(x+\sqrt{3x^2+1}=m\)
<=> \(\sqrt{3x^2+1}=m-x\)
ta thẩ : \(\sqrt{3x^2+1}\ge0\)=> \(m-x\ge0\)
<=> \(m\ge x\)
ĐKXĐ: \(x>2\)
\(\Leftrightarrow x+\left(x-2\right)=3m-1\)
\(\Leftrightarrow2x=3m+1\Rightarrow x=\frac{3m+1}{2}\)
Để pt đã cho có nghiệm:
\(\Leftrightarrow\frac{3m+1}{2}>2\Rightarrow m>1\)
a/ \(\sqrt{x-m}>\sqrt{x-2m}+\sqrt{x-3m}\)
\(\Leftrightarrow x-m>2x-5m+2\sqrt{\left(x-2m\right)\left(x-3m\right)}\)
\(\Leftrightarrow4m-x>2\sqrt{\left(x-2m\right)\left(x-3m\right)}\)
- Với \(m\le0\) BPT vô nghiệm
- Với \(m>0\) \(\Rightarrow3m< x< 4m\)
Bình phương 2 vế:
\(x^2-8mx+16m^2>4\left(x^2-5mx+6m^2\right)\)
\(\Leftrightarrow3x^2-12mx+8m^2< 0\)
\(\Rightarrow\frac{6-2\sqrt{3}}{3}m< x< \frac{6+2\sqrt{3}}{3}m\)
Kết hợp \(3m< x< 4m\Rightarrow3m< x< \frac{6-2\sqrt{3}}{3}m\)
b/ Đặt \(\sqrt{x+m}=t\ge0\Rightarrow x=t^2-m\)
BPT trở thành: \(t^2-2m\le t\Leftrightarrow t^2+t\le2m\)
Ta thấy hàm số \(y=t^2+t\) đồng biến trên \([0;+\infty)\) do \(a=1\) dương và \(-\frac{b}{2a}=-\frac{1}{2}< 0\)
\(\Rightarrow y\ge y\left(0\right)=0\)
Vậy:
- Với \(m< 0\) BPT vô nghiệm
- Với \(m\ge0\) ta có nghiệm dương của pt \(t^2+t-2m=0\) là \(\frac{-1+\sqrt{8m+1}}{2}\)
\(\Rightarrow\) Nghiệm của BPT là \(t\in\left[0;\frac{-1+\sqrt{8m+1}}{2}\right]\) hay \(x\in\left[-m;\frac{2m+1-\sqrt{8m+1}}{2}\right]\) với \(m\ge0\)
Lời giải:
ĐK:
$1\leq x\leq 2$
$2m+x+x^2\geq 0$
PT $Leftrightarrow -x^2+3x-2=2m+x+x^2$
$\Leftrightarrow m=-x^2+x-1$
Để PT có nghiệm thì $\min (-x^2+x-1)\leq m\leq max (-x^2+x-1)$ với $1\leq x\leq 2$
Với $1\leq x\leq 2$ dễ thấy:
$(-x^2+x-1)_{\max}=-1$ tại $x=1$
$(-x^2+x-1)_{\min}=-3$ tại $x=2$
Do đó: $-3\leq m\leq -1$
Điều kiện xác định : \(\begin{cases}2x-4\ge0\\x-m\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\ge m\end{cases}\) \(\Leftrightarrow x\ge m\ge2\)
Bình phương hai vế : \(4\left(x-2\right)^2=9\left(x-m\right)\Leftrightarrow4\left(x^2-4x+4\right)=9x-9m\)
\(\Leftrightarrow4x^2-25x+\left(16+9m\right)=0\)
Để pt có nghiệm thì \(\Delta=25^2-4.4.\left(16+9m\right)\ge0\)
\(\Leftrightarrow m\le\frac{41}{16}\)
Vậy để pt có nghiệm thì \(2\le m\le\frac{41}{16}\)