Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự xử lí delta nha
Theo vi-et: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-\left(m-1\right)\left(m-3\right)\end{matrix}\right.\)
Theo đề: \(\frac{1}{4}.\left(2m\right)^2-\left(m-1\right)\left(m-3\right)-2.2m+3=0\)
<=> \(m^2-m^2+4m-3-4m+3=0\) (TM)
Vậy vs mọi m thỏa delta thì ...
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\sqrt{5}\\x_1x_2=1\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-5x_1x_2=\left(\sqrt{5}\right)^2-5.1=0\)
\(B=\frac{1}{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}=\frac{1}{\left(\sqrt{5}\right)^3-3.1.\sqrt{5}}=\frac{1}{2\sqrt{5}}\)
\(C=\frac{x_1+x_2}{x_1x_2}=\sqrt{5}\)
\(D=\frac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=\frac{5-2}{1^2}=3\)
\(E=\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)\Rightarrow E^2=x_1x_2\left(x_1+x_2+2\sqrt{x_1x_2}\right)\)
\(\Rightarrow E^2=1\left(\sqrt{5}+2.1\right)\Rightarrow E=\sqrt{2+\sqrt{5}}\)
\(F=\frac{3\left(x_1+x_2\right)+5x_1x_2}{x_1x_2\left(x_1^2+x_2^2\right)}=\frac{3\left(x_1+x_2\right)-5x_1x_2}{x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}=\frac{3\sqrt{5}-5}{3}\)
Bạn quy đồng cái đk cho trước lên,,rồi thay x1+x2 và x1.x2 vào,,,, OK???
TH1: m=1
Pt sẽ là -3x+2=0
hay x=2/3(loại)
TH2: m<>1
\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)\cdot2=9-8\left(m-1\right)=-8m+17\)
Để phương trình có hai nghiệm thì -8m+17>=0
hay m<=17/8
Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=3\)
\(\Leftrightarrow\dfrac{3}{m-1}=3\cdot\dfrac{2}{m-1}=\dfrac{6}{m-1}\)(vô lý)
Tự xử lí delta nha
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=2\) <=> \(\frac{x_1+x_2}{x_1.x_2}=2\) <=> 2.x1.x2 = x1 + x2
Theo vi-et: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=1-m\end{matrix}\right.\)
Theo đề: 2.(1 - m) = 2(m + 1)
<=> 2 - 2m = 2m + 2
<=> 4m = 0
<=> m = 0 (đối chiếu ĐK)
Vậy ...