Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2\left(m+1\right)x^2+2m+1=0\)
\(\Leftrightarrow x^4-2mx^2-2x^2+2m+1=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-2m\left(x^2-1\right)-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x^2=2m+1\end{cases}}\)
Để pt có 4 nghiệm pb \(\Leftrightarrow\hept{\begin{cases}2m+1>0\\2m+1\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m\ne0\end{cases}}}\)
Vậy...
\(x^2-\left(2m+3\right)x-2m-4=0\)
Ta có \(\Delta=\left(2m+3\right)^2+4\left(2m+4\right)\)
\(=4m^2+12m+9+8m+16\)
\(=4m^2+20m+25\)
\(=\left(2m+5\right)^2\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow m\ne-\frac{5}{2}\)
theo Viet \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1x_2=-2m-4\end{cases}}\)
Ta cso \(\left|x_1\right|+\left|x_2\right|=5\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=5\)
\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=5\)
\(\Leftrightarrow\left(2m+3\right)^2-2\left(-2m-4\right)+2\left|-2m-4\right|=5\)
\(\Leftrightarrow4m^2+12m+9+4m+8+4\left|m+2\right|=5\)
\(\Leftrightarrow4m^2+16m+4\left|m+2\right|+12=0\)
Đến đấy bạn xét khoảng của m so với -2 là xong