Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: m - 1 x + 6 ≥ 0 ; x + 2 ≥ 0 . Do đó,
m - 1 x + 6 + x + 2 = 0 ⇔ m - 1 x + 6 = 0 x + 2 = 0 ⇔ m - 1 . - 2 + 6 = 0 x = - 2 ⇔ - 2 m + 2 + 6 = 0 x = - 2 ⇔ m = 4 x = - 2
Chọn A.
Phương trình đã cho có nghiệm khi ∆ ' = 1 - m ≥ 0 ⇔ m ≤ 1 .
Theo định lí Vi-ét, ta có: x 1 + x 2 = - 2 x 1 x 2 = m .
Kết hợp với điều kiện của bài toán 3 x 1 + 2 x 2 = 1 ta có hệ phương trình:
x 1 + x 2 = - 2 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = - 7
Do đó,x1.x2 = - 35= m (thỏa mãn m ≤ 1 ).
Chọn D.
Theo hệ thức Vi-ét ta có: S = \(\dfrac{3}{m+2}\), P = \(\dfrac{2m-3}{m+2}\)
Điều kiện để PT có 2 nghiệm trái dấu là: P < 0 \(\Leftrightarrow\dfrac{2m-3}{m+2}< 0\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< \dfrac{3}{2}\)
có 1 cách nhanh hơn bạn có thể tham khảo:
2 nghiệm phân biệt trái dấu <=> ac<0
<=> (m+2)(2m-3)<0
<=> -2<m<3/2
a: \(\text{Δ}=\left(m+3\right)^2-4\left(-2m^2+2\right)\)
\(=m^2+6m+9+8m^2-8\)
=9m^2+6m+1
=(3m+1)^2
Để pt có hai nghiệm pb thì 3m+1<>0
=>m<>-1/3
\(\left\{{}\begin{matrix}x_1+x_2=-m-3\\3x_1+2x_2=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1+3x_2=-3m-9\\3x_1+2x_2=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=-3m-17\\x_1=-m-3+3m+17=2m+14\end{matrix}\right.\)
x1x2=-2m^2+2
=>-2m^2+2=(-3m-17)(2m+14)
\(\Leftrightarrow2m^2-2=\left(3m+17\right)\left(2m+14\right)\)
\(\Leftrightarrow6m^2+42m+34m+238-2m^2+2=0\)
=>4m^2+76m+236=0
hay \(m=\dfrac{-19\pm5\sqrt{5}}{2}\)
b: \(x^2+\left(m-1\right)x+5m-6=0\)
\(\text{Δ}=\left(m-1\right)^2-4\left(5m-6\right)\)
=m^2-2m+1-20m+24
=m^2-22m+25
Để phương trình có hai nghiệm phân biệt thì m^2-22m+25>0
=>\(\left[{}\begin{matrix}m< 11-4\sqrt{6}\\m>11+4\sqrt{6}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-m+1\\4x_1+3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1+4x_2=-4m+4\\4x_1+3x_2=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_2=-4m+3\\x_1=-m+1+4m-3=3m-2\end{matrix}\right.\)
x1x2=5m-6
=>(-4m+3)(3m-2)=5m-6
=>-12m^2+8m+9m-6=5m-6
=>-12m^2+17m-5m=0
=>-12m^2+12m=0
=>m=0 hoặc m=1
=>m^2x-m^3=-x-m^2
=>x(m^2+1)=m^3-m^2
Để phương trình có nghiệm thì m^2+1<>0
=>\(m\in R\)
\(m\in\left[-4;5\right]\)