Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(x^2m-2\left(m-1\right)x+m+1=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=4m+4\)
Để phương trình có 2 nghiệm phân biệt
\(\Rightarrow\Delta>0\Leftrightarrow m>-1\)
Theo định lý Viet
\(\Rightarrow\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1.x_2=\frac{m+1}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x_1+x_2\right)^2=\left[\frac{2\left(m-1\right)}{m}\right]^2\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x_1^2+x_2^2+2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}\left(1\right)\\2x_1x_2=\frac{2\left(m+1\right)}{m}\end{cases}}\)
Xét phương trình ( 1 )
\(pt\left(1\right)\Leftrightarrow16+\frac{2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{16m+2\left(m+1\right)}{m}=\frac{4\left(m-1\right)^2}{m^2}\)
\(\Leftrightarrow\frac{18m+2}{m}=\frac{4\left(m^2-2m+1\right)}{m^2}\)
\(\Leftrightarrow m^2\left(18m+2\right)=4m\left(m^2-2m+1\right)\)với m khác 0
\(\Leftrightarrow m\left(18m+2\right)=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow18m^2+2m=4m^2-8m+4\)
\(\Leftrightarrow14m^2+10m-4=0\)
\(\Delta=b^2-4ac\)
\(\Rightarrow\Delta=324\)
\(\Rightarrow\hept{\begin{cases}m_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-10+\sqrt{324}}{28}\\m_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-10-\sqrt{324}}{28}\end{cases}}\)
Do \(m>-1\)
\(\Rightarrow m=\frac{-10+\sqrt{324}}{28}\)
a. x2 -6m + 2m + 5 =0 (có a=1 ; b=-6 ; c=2m+5)
Ta có Δ=b2 - 4ac ⇒ Δ=26-8m
Để pt có 2 nghiệm thì Δ≥0 ⇒ 26-8m≥0 ⇔ m≤\(\frac{-13}{4}\)
Vì pt có 2 nghiệm nên theo hệ thúc Vi-ét ta có: x1 + x2 = 6 ; x1x2=2m+5
Ta có: x12 + x22 = 26 ⇔ x12 + 2x1x2 + x22 - 2x1x2 = 26 ⇔ \(\left(x_1+x_2\right)^2\) - 2x1x2 = 26
Thay số: 62 - 2(2m+5) = 26 ⇒ 36 - 4m - 10 = 26 ⇒ 4m = 0 ⇒ m=0.
Vậy với m=0 thì ...........
a/ \(\Delta'=9-\left(2m+5\right)=4-2m\ge0\Rightarrow m\le2\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m+5\end{matrix}\right.\)
\(x_1^2+x_2^2=26\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=26\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-26=0\)
\(\Leftrightarrow6^2-2\left(2m+5\right)-26=0\)
\(\Leftrightarrow-4m=0\)
\(\Rightarrow m=0\) (thỏa mãn)
Phương trình 2 nghiệm phân biệt khi
\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)
\(\Leftrightarrow m\ne-1\)
Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)
Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)
<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)
Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán
\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)
\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)
\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)
\(\Leftrightarrow m\ge-\dfrac{8}{3}\)
Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)
Ta có : \(x^2-2x-2m+1=0\)
=> \(\Delta=b^{,2}-ac=1-\left(-2m+1\right)=1+2m-1=2m\)
- Để phương trình có hai nghiệm phân biệt thì :\(\Delta>0\)
=> m > 0 .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2m\end{matrix}\right.\)
- Ta có : \(x^2_2\left(x_1^2-1\right)+x^2_1\left(x_2^2-1\right)=8\)
=> \(\left(x_1x_2\right)^2-x^2_2+\left(x_1x_2\right)^2-x^2_1=8\)
=> \(2\left(x_1x_2\right)^2-\left(x_1^2+x_2^2\right)=8\)
=> \(2\left(x_1x_2\right)^2-\left(\left(x_1+x_2\right)^2-2x_1x_2\right)=8\)
=> \(2\left(1-2m\right)^2-\left(2^2-2\left(1-2m\right)\right)=8\)
=> \(2-8m+8m^2-4+2-4m-8=0\)
=> \(8m^2-12m-8=0\)
=> \(\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{1}{2}\left(L\right)\end{matrix}\right.\)
=> m = 2 .
Vậy ...