Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^4-x^2-2mx-m^2=0\)
<=> \(x^4-\left(x+m\right)^2=0\)
<=> \(\left(x^2-x-m\right)\left(x^2+x+m\right)=0\)
<=> \(\orbr{\begin{cases}x^2-x-m=0\left(1\right)\\x^2+x+m=0\left(2\right)\end{cases}}\)
<=> \(\Delta_1=\left(-1\right)^2+4m=4m+1\)
\(\Delta_2=1^2-4m=1-4m\)
Để pt có 4 nghiệm phân biệt <=> pt (1) và pt (2) cùng có 2 nghiệm pb
<=> \(\hept{\begin{cases}\Delta_1>0\\\Delta_2>0\end{cases}}\) <=> \(\hept{\begin{cases}4m+1>0\\1-4m>0\end{cases}}\) <=> \(\hept{\begin{cases}m>-\frac{1}{4}\\m< \frac{1}{4}\end{cases}}\) <=> \(-\frac{1}{4}< m< \frac{1}{4}\)
Vậy ...
a/
Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=m^2-2\left(m^2-2\right)>0\Leftrightarrow-m^2+4>0\)
\(\Leftrightarrow m^2<\)\(4\Leftrightarrow-2<\)\(m<2\)
Khi đó, pt có 2 nghiệm phân biệt \(x_1;\text{ }x_2\text{ thỏa: }x_1+x_2=-\frac{b}{a}=m;\text{ }x_1.x_2=\frac{c}{a}=\frac{m^2-2}{2}\)
Để x1; x2 dương thì \(x_1+x_2=m>0;\text{ }x_1.x_2=\frac{m^2-2}{2}>0\)
\(\Leftrightarrow m>0;\text{ }m^2>2\Leftrightarrow m>0;\text{ }\left(m>\sqrt{2}\text{ hoặc }x<-\sqrt{2}\right)\)
\(\Leftrightarrow m>\sqrt{2}\)
Đối chiếu điều kiện, ta được \(\sqrt{2}<\)\(m<2\)
b/
phương trình có 2 nghiệm không âm \(\Leftrightarrow x_1+x_2=m\ge0;\text{ }x_1.x_2=\frac{m^2-2}{2}\ge0\)\(\Leftrightarrow m\ge0;\text{ }m\ge\sqrt{2}\text{ hoặc }m\le-\sqrt{2}\Leftrightarrow\sqrt{2}\le m<2\)
Nghiệm dương lớn hơn là:
\(x=\frac{m+\sqrt{4-m^2}}{2}\)
Với 2 số thức a, b bất kì, ta có: \(\left(a-b\right)^2\ge0\Rightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\). Dấu "=" xảy ra khi a = b.
Suy ra \(\left(m+\sqrt{4-m^2}\right)^2\le2\left(m^2+4-m^2\right)=8\)
\(\Rightarrow x=\frac{m+\sqrt{4-m^2}}{2}\le\frac{2\sqrt{2}}{2}=\sqrt{2}\)
Dấu "=" xảy ra khi \(m=\sqrt{4-m^2}\Leftrightarrow m=\sqrt{2}\text{ (thỏa mãn) }\)
Vậy nghiệm dương lớn nhất của pt là \(\sqrt{2}\) khi \(m=\sqrt{2}\)
x4 - 2mx2 + m2 -3 = 0 (*)
đặt x2 = t
pt (*) <=> t2 -2mt + m2 - 3 = 0 (1)
để pt (*) có 3 nghiệm phân biệt thì (1) phải có 1 nghiệm dương t1 > 0 và t2 = 0
thay t = 0 vào (1) ta được:
m2 - 3 = 0 <=> m = -\(\sqrt{3}\); m= \(\sqrt{3}\)
thay m = -\(\sqrt{3}\); m= \(\sqrt{3}\) vào (1) ta được:
m = -\(\sqrt{3}\) <=> t = -2 \(\sqrt{3}\); t =0 (loại)
Vậy m=\(\sqrt{3}\)=> t=2\(\sqrt{3}\)
=> x2=2\(\sqrt{3}\)(thỏa)
=> khi m=\(\sqrt{3}\), phương trình đã cho có 3 nghiệm
Để phương trình có hai nghiệm phân biệt thì
\(\Delta'>0\Leftrightarrow M^2+4>0\) luôn đúng
Vậy phương trình luôn có hai nghiệm phân biệt với mọi M
Ta có : \(\Delta=\left(2m\right)^2-4\left(-4\right)=4m^2+16\ge16>0\)* luôn đúng *
Vậy phương trình có 2 nghiệm phân biệt
Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)
= \(m^2-2m+1=\left(m-1\right)^2\)
Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)
Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)
ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT
\(\Leftrightarrow4m^2-4\left(m+2\right)>0\)
\(\Leftrightarrow m^2-m-2>0\)
=>(m-2)(m+1)>0
=>m>2 hoặc m<-1
\(=m^2-m+\dfrac{1}{4}-\dfrac{1}{4}-2=\left(m-\dfrac{1}{2}\right)^2-\dfrac{9}{4}=\left(m+2\right)\left(m-1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)thì pt luôn có 2 nghiệm pb