Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x^2-8x+3-5+4m=0
=>x^2-8x+4m-2=0
\(\text{Δ}=\left(-8\right)^2-4\left(4m-2\right)\)
\(=64-16m+8=-16m+72\)
Để pt có hai nghiệm thì -16m+72>=0
=>-16m>=-72
=>m<=9/2
Theo đề, ta có:x1+x2<10
=>8/1<10
=>8<10(luôn đúng)
b: \(\text{Δ}=\left(-3\right)^2-4\left(-m+1\right)=9+4m-4=4m+5\)
Để phương trình có hai nghiệm thì 4m+5>=0
=>m>=-5/4
1/x1+1/x2=-4
=>\(\dfrac{x_2+x_1}{x_1x_2}=-4\)
=>\(\dfrac{3}{-m+1}=-4\)
=>-m+1=-3/4
=>m-1=3/4
=>m=7/4
a) tử x^2 -8x +20 =(x-4)^2 +4 >0 mọi x => cần
mẫu <0 với mọi x
cần m<0
đủ (m+1)^2 -m(9m+4) <0
<=> m^2 +2m -1 >0
del(m) =1 +1 =2
m <=(-1 -can2)/2
Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)
Ko mất tính tổng quát, giả sử \(x_1=3x_2\)
Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)
Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)
\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)
Vậy ko tồn tại m thỏa mãn
giúp mik với đi ạ mik thực sự đang cần gấp