\(\sqrt{6+x-x^2}\) -3x = m (
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

2.

NV
9 tháng 6 2019

a/ ĐKXĐ: \(x>\frac{1}{2}\)

\(\Leftrightarrow\frac{3x^2-1}{\sqrt{2x-1}}-\sqrt{2x-1}=mx\)

\(\Leftrightarrow\frac{3x^2-2x}{\sqrt{2x-1}}=mx\Leftrightarrow\frac{3x-2}{\sqrt{2x-1}}=m\)

Đặt \(\sqrt{2x-1}=a>0\Rightarrow x=\frac{a^2+1}{2}\Rightarrow\frac{3a^2-1}{2a}=m\)

Xét hàm \(f\left(a\right)=\frac{3a^2-1}{2a}\) với \(a>0\)

\(f'\left(a\right)=\frac{12a^2-2\left(3a^2-1\right)}{4a^2}=\frac{6a^2+2}{4a^2}>0\)

\(\Rightarrow f\left(a\right)\) đồng biến

Mặt khác \(\lim\limits_{a\rightarrow0^+}\frac{3a^2-1}{2a}=-\infty\); \(\lim\limits_{a\rightarrow+\infty}\frac{3a^2-1}{2a}=+\infty\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

NV
9 tháng 6 2019

b/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt[4]{\left(x-1\right)^2}+4m\sqrt[4]{\left(x-1\right)\left(x-2\right)}+\left(m+3\right)\sqrt[4]{\left(x-2\right)^2}=0\)

Nhận thấy \(x=2\) không phải là nghiệm, chia 2 vế cho \(\sqrt[4]{\left(x-2\right)^2}\) ta được:

\(\sqrt[4]{\left(\frac{x-1}{x-2}\right)^2}+4m\sqrt[4]{\frac{x-1}{x-2}}+m+3=0\)

Đặt \(\sqrt[4]{\frac{x-1}{x-2}}=a\) pt trở thành: \(a^2+4m.a+m+3=0\) (1)

Xét \(f\left(x\right)=\frac{x-1}{x-2}\) khi \(x>0\)

\(f'\left(x\right)=\frac{-1}{\left(x-2\right)^2}< 0\Rightarrow f\left(x\right)\) nghịch biến

\(\lim\limits_{x\rightarrow2^+}\frac{x-1}{x-2}=+\infty\) ; \(\lim\limits_{x\rightarrow+\infty}\frac{x-1}{x-2}=1\) \(\Rightarrow f\left(x\right)>1\Rightarrow a>1\)

\(\left(1\right)\Leftrightarrow m\left(4a+1\right)=-a^2-3\Leftrightarrow m=\frac{-a^2-3}{4a+1}\)

Xét \(f\left(a\right)=\frac{-a^2-3}{4a+1}\) với \(a>1\)

\(f'\left(a\right)=\frac{-2a\left(4a+1\right)-4\left(-a^2-3\right)}{\left(4a+1\right)^2}=\frac{-4a^2-2a+12}{\left(4a+1\right)^2}=0\Rightarrow a=\frac{3}{2}\)

\(f\left(1\right)=-\frac{4}{5};f\left(\frac{3}{2}\right)=-\frac{3}{4};\) \(\lim\limits_{a\rightarrow+\infty}\frac{-a^2-3}{4a+1}=-\infty\)

\(\Rightarrow f\left(a\right)\le-\frac{3}{4}\Rightarrow m\le-\frac{3}{4}\)

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Giải:

\(\sqrt{3x^2-3}=\sqrt{m-x^2}\)

Ta thấy hàm \(f(x)=\sqrt{3x^2-3}-\sqrt{m-x^2}\) là hàm chẵn , tức là nếu \(x\) là nghiệm thì \(-x\) cũng là nghiệm. Mà \(3x^2-3\geq 0\) nên \(x\neq 0\), nên phương trình luôn tồn tại hai nghiệm đối nhau phân biệt với mọi \(m\) xác định.

Lúc này, ta chỉ cần xét \(m\) thỏa mãn đkxđ của PT, tức là \(m\geq x^2\geq 1\)

Vậy \(m\geq 1\)

4 tháng 3 2017

\(\sqrt{3x^2-3}=\sqrt{m-x^3}\)(1)

đk: \(\left\{{}\begin{matrix}\left|x\right|\ge1\\x\le\sqrt[3]{m}\end{matrix}\right.\)(*) \(\Rightarrow3x^2-3=m-x^3\)(2)

để (1) có hai nghiệm phân biệt => (2) phải có hai nghiệm phân biệt thủa mãn (*)

\(\left(2\right)\Leftrightarrow x^3+3x^2-3-m=0\)

\(\Leftrightarrow\left(x+1\right)^3-3\left(x+1\right)-1-m=0\) đặt \(x+1=y\Rightarrow\left[{}\begin{matrix}y\le0\\y\ge2\end{matrix}\right.\)

\(\Leftrightarrow y^3-3y=m+1\)

xét VP

xét khi y<=0

\(A=y^3-3y\)

\(2-A=2-y^3+3y=\left(2-y\right)\left(y+1\right)^2\) \(\left\{{}\begin{matrix}y\le0\\2-y\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2-y\right)\left(y+1\right)^2\ge0\)

Vậy \(2-A\ge0\Rightarrow\left\{{}\begin{matrix}y\le0\\A\le2\end{matrix}\right.\)

xét khi y>=2

\(\left\{{}\begin{matrix}y\ge2\\2-y\le0\end{matrix}\right.\) \(\Rightarrow2-A\le0\Rightarrow A\ge2\)

Kết luận: để (1) có đúng 2 nghiệm VT=m+1=2=> m=1

Thử lại với m=1 có hai nghiệm \(\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\) thỏa mãn (*)

4 tháng 3 2017

xét thiếu khi VT <2 có 3 nghiệm nhưng loại một y<2 => thủa mãn có hai nghiệm.

để tính tiếp

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

NV
19 tháng 7 2020

Xét \(f\left(x\right)=3\sqrt{4-3x^2}-2\sqrt{x^3+4x^2+4}\) trên \(\left[-1;1\right]\)

Để \(f\left(x\right)\ge m\) có nghiệm \(\Leftrightarrow m\le\max\limits_{\left[-1;1\right]}f\left(x\right)\)

\(f'\left(x\right)=\frac{-9x}{\sqrt{4-3x^2}}-\frac{3x^2+8x}{\sqrt{x^3+4x^2+4}}=0\)

\(\Leftrightarrow-x\left(\frac{9}{\sqrt{4-3x^2}}+\frac{3x+8}{\sqrt{x^3+4x^2+4}}\right)=0\)

\(\Rightarrow x=0\) (phần ngoặc to luôn dương với mọi \(x\ge-1\))

Từ BBT ta thấy \(\max\limits_{\left[-1;1\right]}f\left(x\right)=f\left(0\right)=2\)

\(\Rightarrow m\le2\)

11 tháng 4 2016

Ta có \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\Leftrightarrow\left(m+2\right)x+m\ge x^2-2x+1\)

                                                   \(\Leftrightarrow m\ge\frac{x^2-4x+1}{x+1}\) (vì \(x\in\left[0;2\right]\)

Xét hàm số \(f\left(x\right)=\frac{x^2-4x+1}{x+1}\) trên đoạn \(\left[0;2\right]\) ta có

\(f'\left(x\right)=\frac{x^2+2x-5}{\left(x+1\right)^2};f'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{6}\)

Lập bảng biến thiên ta được 

\(f\left(0\right)=1;f\left(2\right)=-1\)

\(f\left(-1+\sqrt{6}\right)=2\sqrt{6}-6\)

Vậy bất phương trình đã cho có nghiệm thì \(m>\) min (0;2] \(f\left(x\right)=f\left(-1+\sqrt{6}\right)=2\sqrt{6-6}\)