K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2022

=>m^2x-m^3=-x-m^2

=>x(m^2+1)=m^3-m^2

Để phương trình có nghiệm thì m^2+1<>0

=>\(m\in R\)

16 tháng 1 2019

Theo hệ thức Vi-ét ta có: S = \(\dfrac{3}{m+2}\), P = \(\dfrac{2m-3}{m+2}\)

Điều kiện để PT có 2 nghiệm trái dấu là: P < 0 \(\Leftrightarrow\dfrac{2m-3}{m+2}< 0\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{3}{2}\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< \dfrac{3}{2}\)

19 tháng 2 2019

có 1 cách nhanh hơn bạn có thể tham khảo:

2 nghiệm phân biệt trái dấu <=> ac<0

<=> (m+2)(2m-3)<0

<=> -2<m<3/2

NV
24 tháng 10 2019

\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)

\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4m^2-2\left(-m+1\right)\)

\(=4m^2+2m+1\)

Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)

\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)

\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)

30 tháng 11 2022

a: \(\text{Δ}=\left(m+3\right)^2-4\left(-2m^2+2\right)\)

\(=m^2+6m+9+8m^2-8\)

=9m^2+6m+1

=(3m+1)^2

Để pt có hai nghiệm pb thì 3m+1<>0

=>m<>-1/3

\(\left\{{}\begin{matrix}x_1+x_2=-m-3\\3x_1+2x_2=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1+3x_2=-3m-9\\3x_1+2x_2=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_2=-3m-17\\x_1=-m-3+3m+17=2m+14\end{matrix}\right.\)

x1x2=-2m^2+2

=>-2m^2+2=(-3m-17)(2m+14)

\(\Leftrightarrow2m^2-2=\left(3m+17\right)\left(2m+14\right)\)

\(\Leftrightarrow6m^2+42m+34m+238-2m^2+2=0\)

=>4m^2+76m+236=0

hay \(m=\dfrac{-19\pm5\sqrt{5}}{2}\)

b: \(x^2+\left(m-1\right)x+5m-6=0\)

\(\text{Δ}=\left(m-1\right)^2-4\left(5m-6\right)\)

=m^2-2m+1-20m+24

=m^2-22m+25

Để phương trình có hai nghiệm phân biệt thì m^2-22m+25>0

=>\(\left[{}\begin{matrix}m< 11-4\sqrt{6}\\m>11+4\sqrt{6}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-m+1\\4x_1+3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1+4x_2=-4m+4\\4x_1+3x_2=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_2=-4m+3\\x_1=-m+1+4m-3=3m-2\end{matrix}\right.\)

x1x2=5m-6

=>(-4m+3)(3m-2)=5m-6

=>-12m^2+8m+9m-6=5m-6

=>-12m^2+17m-5m=0

=>-12m^2+12m=0

=>m=0 hoặc m=1

21 tháng 7 2016

Mọi người đâu hết zùi, giúp mk với!!!

31 tháng 7 2016

sao phải lm hì

16 tháng 6 2020

2b,c mình chỉ ghi cách mà thôi, bạn tự giải nhé :v

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

18 tháng 6 2018

Ta có: m - 1 x + 6 ≥ 0 ;   x + 2 ≥ 0 . Do đó,

m - 1 x + 6 + x + 2 = 0 ⇔ m - 1 x + 6 = 0 x + 2 = 0 ⇔ m - 1 . - 2 + 6 = 0 x = - 2 ⇔ - 2 m + 2 + 6 = 0 x = - 2 ⇔ m = 4 x = - 2

 Chọn A.

30 tháng 11 2019

Phương trình có 2 nghiệm x1;x2 thì :\(\Delta>0\)

\(\Delta=9+4.6=33>0\)

Theo định lí Vi-ét,ta có :

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-6\end{matrix}\right.\)

Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=3^2+12=21\)

=> Chọn A.(21)

28 tháng 7 2016

quy đồng lên thì dc

(ax^2-a^2a+b^2*x-b^2*c)=x^2-cx-dx+cd

<=>x^2(a-1)+x(b^2+c+d)-(a^2*d+b^2c+cd)=0

đen ta =(a-1)^2+4(b^2+c+d)(a^2a+b^2c+cd)

giải ra đen ta >0 là dc

24 tháng 7 2016

pt bậc 1 mà sao lại có 2 nghiệm dc nhể