Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình (1)
\(\dfrac{x+24}{5}-\dfrac{x}{3}>x-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{3x+72-5x}{15}>\dfrac{2x-x+2}{2}\)
\(\Leftrightarrow\dfrac{72-2x}{15}>\dfrac{x+2}{2}\)
\(\Leftrightarrow144-4x>15x+30\)
\(\Leftrightarrow114>19x\)
\(\Leftrightarrow x< 6\)
Phương trình (2)
\(\dfrac{7x+3}{8}+\dfrac{x-3}{12}\ge3\)
\(\Leftrightarrow\dfrac{21x+9+2x-6}{24}\ge3\)
\(\Leftrightarrow23x+3\ge72\)
\(\Leftrightarrow23x\ge69\)
\(\Leftrightarrow x\ge3\)
Đây là ý kiến riêng nha !@@
Phương trình (3)
\(m\left(x+3\right)\ge x+5\)
\(\Leftrightarrow mx+3m-x-5\ge0\)
Phương trình (4)
\(m\left(x+2\right)-3\ge x\)
\(\Leftrightarrow mx+2x-3-x\ge0\)
Để hai phương trình có nghiệm chung
\(\Rightarrow mx+3m-x-5=mx+2x-3-x\)
\(\Leftrightarrow m=2\)
Vậy khi m=2 thì 2 pt có nghiệm chung
Vì \(x=2\)là nghiệm của bất phương trình nên ta có :
\(\frac{2-18}{4}-m< 3.2-\frac{m-2}{2}\)
\(\Leftrightarrow-4-m< 6-\frac{m-2}{2}\)
\(\Leftrightarrow-4-m< \frac{12-m+2}{2}\)
\(\Leftrightarrow2\left(-4-m\right)< 14-m\)
\(\Leftrightarrow-8-2m< 14-m\)
\(\Leftrightarrow-2m+m< 14+8\)
\(\Leftrightarrow-m< 22\)
\(\Leftrightarrow m>-22\)
Vậy điều kiện cần tìm của \(m\)là \(m>-22\)
a. Ta có x – 3 = 2m + 4
⇔ x = 2m + 4 + 3
⇔ x = 2m + 7
Phương trình có nghiệm số dương khi 2m + 7 > 0 ⇔ m > \(\dfrac{-7}{2}\)
b. Ta có: 2x – 5 = m + 8
⇔ 2x = m + 8 + 5
⇔ 2x = m + 13
⇔ x = \(\dfrac{-\left(x+13\right)}{2}\)
Phương trình có nghiệm số âm khi \(\dfrac{-\left(m+13\right)}{2}\) < 0 ⇔ m + 13 < 0 ⇔ m < -13
Chọn C
Lời giải:
$2x+5< x+8-m$
$\Leftrightarrow 2x-x< 8-5-m$
$\Leftrightarrow x< 3-m$
Để BPT có nghiệm đều là số âm thì $3-m\leq 0$
$\Lefrightarrow m\geq 3$
Đáp án D.