Tìm m để hs: y= \(|-x^2+2x+3m-1|\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

bạn viết vậy k hiểu đề. viết lại đi

19 tháng 6 2016

tìm m để hàm số f(x)=\(\frac{x+1}{x^2-2\left(m+1\right)x+m^2+2m}\)xác định trên x thuộc (0,1) 

19 tháng 8 2017

\(A\cap B=\left\{1\right\}\)

\(A\cup B=\left\{-2;-1;0;1;2\right\}\)

23 tháng 5 2016

 

1) ( x, y, z chứng minh rằng : a) x + y + z xy+ yz + zx b) x + y + z 2xy – 2xz + 2yz c) x + y + z+3 2 (x + y + z) Giải: a) Ta xét hiệu x + y + z- xy – yz - zx =.2 .( x + y + z- xy – yz – zx) =đúng với mọi x;y;z Vì (x-y)2 0 với(x ; y Dấu bằng xảy ra khi x=y (x-z)2 0 với(x ; z Dấu bằng xảy ra khi x=z (y-z)2 0 với( z; y Dấu bằng xảy ra khi z=y Vậy x + y + z xy+ yz + zx Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz =( x – y + z) đúng với mọi x;y;z Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1 = (x-1)+ (y-1) +(z-1) 0 Dấu(=)xảy ra khi x=y=z=1 2) chứng minh rằng :a) ;b) c) Hãy tổng quát bài toángiảia) Ta xét hiệu = = = Vậy Dấu bằng xảy ra khi a=bb)Ta xét hiệu = VậyDấu bằng xảy ra khi a = b =cc)Tổng quát 3) Chứng minh (m,n,p,q ta đều có m+ n+ p+ q+1( m(n+p+q+1) Giải: (luôn đúng)Dấu bằng xảy ra khi 4) Cho a, b, c, d,e là các số thực chứng minh rằng a) b) c) Giải: a) (bất đẳng thức này luôn đúng) Vậy (dấu bằng xảy ra khi 2a=b) b) Bất đẳng thức cuối đúng. Vậy Dấu bằng xảy ra khi a=b=1 c) Bất đẳng thức đúng vậy ta có điều phải chứng minh5) Chứng minh rằng: Giải: a2b2(a2-b2)(a6-b6) 0 a2b2(a2-b2)2(a4+ a2b2+b4) 0Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh 6) cho x.y =1 và x>y Chứng minh Giải: vì :xy nên x- y 0 x2+y2 ( x-y) x2+y2- x+y 0 x2+y2+2- x+y -2 0 x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh7) 1)CM: P(x,y)= 2)CM: (

Text

NV
6 tháng 10 2020

a.

\(a=-1< 0\) nên GTNN của hàm \(y=ax^2+bx+c\) trên đoạn \(\left[p;q\right]\) sẽ rơi vào 2 đầu mút

Ta có: \(f\left(0\right)=m-5\) ; \(f\left(3\right)=-9+6+m-5=m-8\)

Do \(m-5>m-8\) ; \(\forall m\Rightarrow f\left(x\right)_{min}=f\left(3\right)=m-8\)

\(\Rightarrow m-8=4\Rightarrow m=12\)

b.

Câu này giải rồi

26 tháng 2 2016

Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a) 

\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)

Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\)  (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó

khác nhau và cùng thỏa mãn ( b) , hay là :

\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)

\(\left(\Rightarrow m\ne1\right)\)

\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)

\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)

Vậy  \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm