Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(a=-1< 0\) nên GTNN của hàm \(y=ax^2+bx+c\) trên đoạn \(\left[p;q\right]\) sẽ rơi vào 2 đầu mút
Ta có: \(f\left(0\right)=m-5\) ; \(f\left(3\right)=-9+6+m-5=m-8\)
Do \(m-5>m-8\) ; \(\forall m\Rightarrow f\left(x\right)_{min}=f\left(3\right)=m-8\)
\(\Rightarrow m-8=4\Rightarrow m=12\)
b.
Câu này giải rồi
Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a)
\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)
Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\) (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó
khác nhau và cùng thỏa mãn ( b) , hay là :
\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)
\(\left(\Rightarrow m\ne1\right)\)
\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)
\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)
Vậy \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm
b/ \(y=\frac{2}{3}x^2-\frac{8}{3}x+2=\frac{2}{3}\left(x-2\right)^2-\frac{2}{3}\ge-\frac{2}{3}\)
\(\Rightarrow y_{min}=-\frac{2}{3}\) khi \(x=2\)
c/ Nhìn vào đồ thị ta thấy:
- Để \(y>0\Rightarrow\left[{}\begin{matrix}x< 1\\x>3\end{matrix}\right.\)
- Để \(y< 0\Rightarrow1< x< 3\)
a)Điều kiện: \(x\ge\frac{3}{2}\)
Phương trình đã cho tương đương với:
\(\frac{\left(3x-2\right)-\left(x+1\right)}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\Leftrightarrow\frac{2x-3}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\)
Chú ý rằng \(\sqrt{3x-2}+\sqrt{x+1}\ge\sqrt{x+1}>1\), do đó
\(\frac{1}{\sqrt{3x-2}+\sqrt{x+1}}< 1\)
Trong khi đó \(x+1>1\) nên phương trình có nghiệm duy nhất là \(x=\frac{3}{2}\)
\(\Leftrightarrow\sqrt{3m-2x}=2x+2\) (\(x\ge-1\))
\(\Leftrightarrow3m-2x=\left(2x+2\right)^2\)
\(\Leftrightarrow4x^2+10x+4=3m\)
Đặt \(f\left(x\right)=4x^2+10x+4\), xét \(f\left(x\right)\) trên \([-1;+\infty)\)
\(a=4>0\); \(-\frac{b}{2a}=-\frac{5}{4}< -1\Rightarrow f\left(x\right)\) đồng biến trên miền đã cho
\(\Rightarrow f\left(x\right)\ge f\left(-1\right)=-2\)
\(\Rightarrow\) Để pt đã cho có nghiệm thì \(3m\ge-2\Rightarrow m\ge-\frac{2}{3}\)